1E Part 1 Finite Summations

1. Given that $z=\cos \left(\frac{\pi}{n}\right)+i \sin \left(\frac{\pi}{n}\right)$, where n is a positive integer, show that:

$$
1+z+z^{2}+. .+z^{n-1}=1+\operatorname{icot}\left(\frac{\pi}{2 n}\right)
$$

Notes for $e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+. .+e^{n i \theta}$
2. $S=e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+. .+e^{8 i \theta}$, for $\theta \neq 2 n \pi$, where n is an integer
a) Show that

$$
S=\frac{e^{\frac{9 i \theta}{2}} \sin 4 \theta}{\sin \left(\frac{\theta}{2}\right)}
$$

Let: $P=\cos \theta+\cos 2 \theta+\cos 3 \theta+. .+\cos 8 \theta$ and $Q=\sin \theta+\sin 2 \theta+\sin 3 \theta+. .+\sin 8 \theta$
b) Use your answer to part a to show that $P=\cos \frac{9 \theta}{2} \sin 4 \theta \operatorname{cosec} \frac{\theta}{2}$, and find similar expressions for Q and $\frac{P}{Q}$

