Sum of Series

We can extend our knowledge of geometric series into complex numbers, where the same formulae hold true.

For $w, z \in \mathbb{C}$,

$$
\begin{aligned}
& \sum_{r=0}^{n-1} w z^{r}=w+w z+w z^{2}+\cdots+w z^{n-1}=\frac{w\left(z^{n}-1\right)}{z-1} \\
& \sum_{r=0}^{\infty} w z^{r}=w+w z+w z^{2}+\cdots+w z^{n-1}=\frac{w}{z-1}
\end{aligned}
$$

provided $|z|<1$

Example

Given that $z=\cos \frac{\pi}{n}+i \sin \frac{\pi}{n}$, where n is a positive integer, show that $1+z+z^{2}+\cdots+z^{n-1}=1+i \cot \left(\frac{\pi}{2 n}\right)$

Practise the factorising.........

$$
\begin{gathered}
\frac{3}{e^{2 i \theta}-1}= \\
\frac{4 e^{i \theta}}{e^{4 i \theta}-1}= \\
\frac{1}{e^{\frac{i \theta}{3}}-1}=
\end{gathered}
$$

Using mod-arg form to split summations
$e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+\cdots+e^{n i \theta}$ is a geometric series,

$$
\therefore e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+\cdots+e^{n i \theta}=\frac{e^{i \theta}\left(e^{n i \theta}-1\right)}{e^{i \theta}-1}
$$

Converting each exponential term to modulus-argument form would allow us to consider the real and imaginary parts of the series separately:
\square

Example

$S=e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+\cdots+e^{8 i \theta}$, for $\theta \neq 2 n \pi$, where n is an integer.
(a) Show that $S=\frac{e^{\frac{9 i \theta}{2}} \sin 4 \theta}{\sin \frac{\theta}{2}}$

Let $P=\cos \theta+\cos 2 \theta+\cos 3 \theta+\cdots+\cos 8 \theta$ and $Q=\sin \theta+\sin 2 \theta+$ $\cdots+\sin 8 \theta$
(b) Use your answer to part a to show that $P=\cos \frac{9 \theta}{2} \sin 4 \theta \operatorname{cosec} \frac{\theta}{2}$ and find similar expressions for Q and $\frac{Q}{P}$

