Sum of Series

We can extend our knowledge of geometric series into complex numbers,
where the same formulae hold true.
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Remember:

z" —z™™ = 2isinnf

Thus if we had an expression of the form e
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~_ Thus where e? — 1 occurs in a fraction,
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multiply numerator and denominator by e 2
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Example

Given that z = cosg + i sin %, where n is a positive integer, show that
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Practise the factorising.........
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Using mod-arg form to split summations
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Converting each exponential term to modulus-argument form would allow us
to consider the real and imaginary parts of the series separately:

Example

S =e% +e20 30 1 ... + €89 for @ # 2nm, where n is an integer.
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(a) Show that S = e~ == 512
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Let P = cos 0 + cos20 + cos30 + -+ cos80 and Q = sin 0 + sin 20 +
-+ sin 860

90 0
(b) Use your answer to part a to show that P = cos ~ sin 40 cosec and

find similar expressions for Q and %



