Sum of Series
We can extend our knowledge of geometric series into complex numbers, where the same formulae hold true.For ,




 

provided 


IMPORTANT: One of 


Remember:

Thus if we had an expression of the form , we could cleverly factorise out  (i.e. half the power) to get

Thus where  occurs in a fraction, multiply numerator and denominator by  so that we have just 















Example
Given that , where  is a positive integer, show that
























Practise the factorising……...
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Using mod-arg form to split summations
 is a geometric series,


Converting each exponential term to modulus-argument form would allow us to consider the real and imaginary parts of the series separately:

Example
, for , where  is an integer.
(a) Show that 
Let  and 
(b) Use your answer to part a to show that  and find similar expressions for  and 
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Let’s practise that hard bit...
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