1.3) Complex conjugation

Write the complex conjugate for:
$z=2+3 i$
$z=-2-3 i$
$z=3 i-2$

Write the complex conjugate for:

$$
\begin{gathered}
z=-5-4 i \\
z^{*}=-5+4 i
\end{gathered}
$$

Your turn

Write in the form $a+b i$:
$\frac{5+4 i}{2+3 i}$
Write in the form $a+b i$:

$$
\begin{gathered}
\frac{5+4 i}{2-3 i} \\
-\frac{2}{13}+\frac{23}{13} i
\end{gathered}
$$

Your turn

Given that $z_{1}=2+3 i, z_{2}=\frac{5-12 i}{z_{1}}$,
find z_{2} in the form $a+i b$, where a and b are real

Given that $z_{1}=3+2 i, z_{2}=\frac{12-5 i}{z_{1}}$,
find z_{2} in the form $a+i b$, where a and b are real

Given that $z_{1}=p-3 i, z_{2}=2-5 i$, and that p is an integer, find $\frac{z_{1}}{z_{2}}$ in the form
$a+i b$, where a and b are rational and given in terms of p

Given that $z_{1}=p-5 i, z_{2}=2+3 i$, and that p is an integer, find $\frac{z_{1}}{z_{2}}$ in the form
$a+i b$, where a and b are rational and given in terms of p

$$
\frac{2 p-15}{13}+\frac{-10-3 p}{13} i
$$

Your turn

$$
z=\frac{p+2 i}{p-5 i}, p \in \mathbb{R}, p>0
$$

Given that the real part of z is $\frac{6}{41}$, find the value of p

$$
z=\frac{p+3 i}{p-7 i}, p \in \mathbb{R}, p>0
$$

Given that the real part of z is $\frac{2}{37}$, find the value of p

$$
p=5
$$

Given that $z=x+i y$, where $x, y \in \mathbb{R}$, find the value of x and y such that:

$$
(3-i) z^{*}+2 i z=-9-13 i
$$

where z^{*} is the complex conjugate of z

Given that $z=x+i y$, where $x, y \in \mathbb{R}$, find the value of x and y such that:

$$
(3-i) z^{*}+2 i z=9-i
$$

where z^{*} is the complex conjugate of z

$$
x=5, y=2
$$

