Core Pure 1

Complex Numbers

Chapter Overview

1: Understand and manipulate (\times, \div) complex numbers.
2: Find complex solutions to quadratic equations.
3: Find complex solutions to cubic and quartic equations.

Complex numbers	2.1	Solve any quadratic equation with real coefficients. Solve cubic or quartic equations with real coefficients.	Given sufficient information to deduce at least one root for cubics or at least one complex root or quadratic factor for quartics, for example: (i) $f(z)=2 z^{3}-5 z^{2}+7 z+10$ Given that $2 z-3$ is a factor of $\mathrm{f}(z)$, use algebra to solve $f(z)=0$ completely. (ii) $\mathrm{g}(x)=x^{4}-x^{3}+6 x^{2}+14 x-20$ Given $g(1)=0$ and $g(-2)=0$, use algebra to solve $g(x)=0$ completely.
	2.2	Add, subtract, multiply and divide complex numbers in the form $x+i y$ with x and y real. Understand and use the terms 'real part' and 'imaginary part'.	Students should know the meaning of the terms, 'modulus' and 'argument'.

| 2 | 2.3 | Understand and
 use the complex
 Complex
 numbers
 continued | |
| :--- | :--- | :--- | :--- | | Knowledge that if z_{1} is a root of |
| :--- |
| Know that non- |
| real roots of |
| polynomial |
| equations with |
| real coefficients |
| occur in conjugate |
| pairs. |$\quad \mathbf{f (z) = 0 \text { then } z _ { 1 } ^ { * } \text { is also a root. }}$| |
| :--- |

Complex Number Basics

Examples: Write the following in terms of i
$\sqrt{ }(-36)=$
$\sqrt{-1}=$
$\sqrt{-4}=$
$\sqrt{-7}=$

Simplify:
$(2+3 i)+(4+i)=$
$i-3(2-i)=$
$\frac{10+4 i}{2}=$

Solving Quadratic Equations

Examples

1. Solve $z^{2}+25=0$
2. Solve $z^{2}+3 z+5=0$
