Core Pure 1 Complex Numbers

Chapter Overview

- **1**: Understand and manipulate (\times , \div) complex numbers.
- 2: Find complex solutions to quadratic equations.
- 3: Find complex solutions to cubic and quartic equations.

2 Complex numbers	2.1	Solve any quadratic equation with real coefficients.	Given sufficient information to deduce at least one root for cubics or at least one complex root or quadratic factor for quartics, for example:
		Solve cubic or	(i) $f(z) = 2z^3 - 5z^2 + 7z + 10$
		quartic equations with real coefficients.	Given that $2z - 3$ is a factor of $f(z)$, use algebra to solve $f(z) = 0$ completely.
			(ii) $g(x) = x^4 - x^3 + 6x^2 + 14x - 20$
			Given $g(1) = 0$ and $g(-2) = 0$, use algebra to solve $g(x) = 0$ completely.
	2.2	Add, subtract, multiply and divide complex numbers in the form $x + iy$ with x and y real.	Students should know the meaning of the terms, `modulus' and `argument'.
		Understand and use the terms `real part' and `imaginary part'.	
2	2.3	Understand and	Knowledge that if \mathcal{I}_1 is a root of
Complex numbers		conjugate.	$\mathbf{f}(z)=0$ then ${z_1}^*$ is also a root.
continued		Know that non- real roots of polynomial equations with real coefficients occur in conjugate pairs.	
	2.4	Use and interpret Argand diagrams.	Students should be able to represent the sum or difference of two complex numbers on an Argand diagram.
	2.5	Convert between the Cartesian form and the modulus- argument form of a complex number.	Knowledge of radians is assumed.
	2.6	Multiply and divide complex	Knowledge of the results
		numbers in modulus	$ z_1 z_2 = z_1 z_2 , \frac{ z_1 }{ z_2 } = \frac{ z_1 }{ z_2 }$
		argument form.	$\arg(z_1 \ z_2) = \arg z_1 + \arg z_2$
			$\operatorname{arg}\left(\frac{z_1}{z_2}\right) = \operatorname{arg} z_1 - \operatorname{arg} z_2$
			Knowledge of radians and compound angle formulae is assumed.

Examples: Write the following in terms of i

$$\sqrt{(-36)} = \sqrt{-1} =$$

$$\sqrt{-4} = \sqrt{-7} =$$

Simplify:

(2+3i) + (4+i) =

$$i - 3(2 - i) =$$

$$\frac{10+4i}{2}$$
 =

Solving Quadratic Equations

Examples

1. Solve $z^2 + 25 = 0$

2. Solve $z^2 + 3z + 5 = 0$

Exercise 1A/B Page 3 – 5