1.1) Imaginary and complex numbers

Worked example	Your turn
Write in terms of <i>i</i> : $\sqrt{-39}$	Write in terms of <i>i</i> : $\sqrt{-49}$ 7 <i>i</i>
$\sqrt{-40}$	$\sqrt{-20}$ $(2\sqrt{5})i$

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: (2 + 5i) + (3 + 4i)	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: (2 + 3i) + (4 + 5i)
	6 + 8 <i>i</i>
(2-5i) - (4-3i)	(2-3i) - (4-5i) -2+2i

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: 2(3 + 4i)	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: -8(9 + 10i)
	-72 - 80 <i>i</i>
-5(6 - 7 <i>i</i>)	

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: $\frac{6 - 8i}{2}$	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: $\frac{15 - 12i}{3}$ $5 - 4i$
$\frac{-7+21i}{7}$	

Worked example	Your turn
Given that $z_1 = a + 2i$, $z_2 = -3 + bi$, and $z_2 - z_1 = 5 + 7i$, find a and b , where $a, b \in \mathbb{R}$	Given that $z_1 = a + 5i$, $z_2 = -2 + 7i$, and $z_2 - z_1 = 3 + 11i$, find a and b , where $a, b \in \mathbb{R}$
	a = -5, b = 16

Worked example	Your turn
Given that $z = a + bi$, and $w = a - bi$, where $a, b \in \mathbb{R}$, show that: z + w is always real	Given that $z = a + bi$, and $w = a - bi$, where $a, b \in \mathbb{R}$, show that: z - w is always imaginary (a + bi) - (a - bi) = a + bi - a + bi = 2bi = (2b)i

Worked example	Your turn
Solve: $z^2 = -9$	Solve: $z^2 + 25 = 0$ $z = \pm 5i$
$z^2 + 16 = 0$	

Worked example	Your turn
Solve: $(z+2)^2 + 9 = 0$	Solve: $(z + 4)^2 + 25 = 0$ $z = -4 \pm 5i$
$(z-3)^2 + 16 = 0$	

Worked example	Your turn
Solve: $z^2 + 4z + 13 = 0$	Solve: $z^{2} + 8z + 41 = 0$ $z = -4 \pm 5i$
$z^2 - 6z + 25 = 0$	

	Worked example	Your turn
Solve:	$z^2 + 3z + 13 = 0$	Solve: $2z^2 - 8z + 41 = 0$ $z = 2 \pm \frac{\sqrt{66}}{2}i$
	$3z^2 - 7z + 25 = 0$	

Worked example	Your turn
The equation $z^2 + bz + 31 = 0$, where $b \in \mathbb{R}$, has distinct, non-real complex roots. Find the range of possible values of b	The equation $z^2 + bz + 13 = 0$, where $b \in \mathbb{R}$, has distinct, non-real complex roots. Find the range of possible values of b
	$-2\sqrt{13} < b < 2\sqrt{13}$