1.1) Imaginary and complex numbers

Worked example

Your turn

Write in terms of i :
$\sqrt{-39}$
$\sqrt{-40}$

Write in terms of i :

$$
\sqrt{-49}
$$

$7 i$
$\sqrt{-20}$
$(2 \sqrt{5}) i$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$(2+5 i)+(3+4 i)$

$$
(2-5 i)-(4-3 i)
$$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$(2+3 i)+(4+5 i)$

$$
6+8 i
$$

$$
\begin{gathered}
(2-3 i)-(4-5 i) \\
-2+2 i
\end{gathered}
$$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:

$$
2(3+4 i)
$$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:

$$
-8(9+10 i)
$$

$$
-72-80 i
$$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$: $\frac{6-8 i}{2}$
$\frac{-7+21 i}{7}$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$\frac{15-12 i}{3}$
$5-4 i$

Your turn

Given that $z_{1}=a+2 i, z_{2}=-3+$ $b i$, and $z_{2}-z_{1}=5+7 i$, find a and b, where $a, b \in \mathbb{R}$

Given that $z_{1}=a+5 i, z_{2}=-2+$
$7 i$, and $z_{2}-z_{1}=3+11 i$, find a and b, where $a, b \in \mathbb{R}$

$$
a=-5, b=16
$$

Given that $\mathrm{z}=a+b i$, and $w=a-b i$, where $a, b \in \mathbb{R}$, show that:
$z+w$ is always real

Given that $\mathrm{z}=a+b i$, and $w=a-b i$, where $a, b \in \mathbb{R}$, show that:
$z-w$ is always imaginary

$$
\begin{aligned}
& (a+b i)-(a-b i) \\
= & a+b i-a+b i \\
= & 2 b i \\
= & (2 b) i
\end{aligned}
$$

$$
\begin{gathered}
z^{2}+25=0 \\
z= \pm 5 i
\end{gathered}
$$

$$
\begin{gathered}
(z+4)^{2}+25=0 \\
z=-4 \pm 5 i
\end{gathered}
$$

$$
\begin{gathered}
z^{2}+8 z+41=0 \\
z=-4 \pm 5 i
\end{gathered}
$$

Worked example
Solve:

$$
z^{2}+3 z+13=0
$$

$$
3 z^{2}-7 z+25=0
$$

Solve:

$$
\begin{gathered}
2 z^{2}-8 z+41=0 \\
z=2 \pm \frac{\sqrt{66}}{2} i
\end{gathered}
$$

The equation $z^{2}+b z+31=0$, where $b \in$ \mathbb{R}, has distinct, non-real complex roots. Find the range of possible values of b

The equation $z^{2}+b z+13=0$, where $b \in$ \mathbb{R}, has distinct, non-real complex roots. Find the range of possible values of b

$$
-2 \sqrt{13}<b<2 \sqrt{13}
$$

