1A Exponential Form

1. Express the numbers following numbers in the modulus argument form:
a) $z_{1}=1+i \sqrt{3}$

b) $z_{2}=-3-3 i$

2. Express the complex number $\mathrm{z}=2-3 \mathrm{i}$ in the form $\mathrm{re}^{\mathrm{i} \theta}$, where $-\pi<\theta \leq \pi$

3. Express the following in the form $z=r e^{i \theta}$ where $-\pi<\theta \leq \pi$
a) $z=\sqrt{2}\left(\cos \left(\frac{\pi}{10}\right)+i \sin \left(\frac{\pi}{10}\right)\right)$
b) $z=5\left(\cos \left(\frac{\pi}{8}\right)-i \sin \left(\frac{\pi}{8}\right)\right)$
4. Express the following in the form $z=x+i y$ where $x \in \mathbb{R}$ and $y \in \mathbb{R}$

$$
z=\sqrt{2} e^{\frac{3 \pi}{4} i}
$$

5. Express the following in the form $r(\cos \theta+i \sin \theta)$, where $-\pi<\theta \leq \pi$

$$
z=2 e^{\frac{23 \pi}{5} i}
$$

6. Use: $e^{i \theta}=\cos \theta+i \sin \theta$ To show that: $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$
