Chapter 1

Complex Numbers

Chapter Overview

1. Exponential form of a complex number
2. Multiplying and dividing complex numbers
3. De Moivre's Theorem
4. De Moivre's for Trigonometric Identities
a) Expressing $\cos n \theta / \sin n \theta$ in terms of powers of $\cos \theta$
b) Finding expressions for $\sin ^{n} \theta$ and $\cos ^{n} \theta$
5. Roots
6. Sums of series

2 Complex numbers continued	2.8	Understand de Moivre's theorem and use it to find multiple angle formulae and sums of series.	To include using the results, $z+\frac{1}{z}=2 \cos \theta$ and $\mathrm{z}-\frac{1}{z}=2 \mathrm{i} \sin \theta$ to find $\cos p \theta, \sin q \theta$ and $\tan r \theta$ in terms of powers of $\sin \theta, \cos \theta$ and $\tan \theta$ and powers of $\sin \theta, \cos \theta$ and $\tan \theta$ in terms of multiple angles. For sums of series, students should be able to show that, for example, $1+z+z^{2}+\ldots+z^{n-1}=1+\mathrm{i} \cot \left(\frac{\pi}{2 n}\right)$ where $z=\cos \left(\frac{\pi}{n}\right)+\mathrm{i} \sin \left(\frac{\pi}{n}\right)$ and n is a positive integer.
	2.9	Know and use the definition $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$ and the form $z=r \mathrm{e}^{\mathrm{i} \theta}$	Students should be familiar with $\begin{aligned} & \cos \theta=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right) \text { and } \\ & \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \end{aligned}$
	2.10	Find the n distinct nth roots of $r \mathrm{e}^{\mathrm{i} \theta}$ for $r \neq 0$ and know that they form the vertices of a regular n-gon in the Argand diagram.	
	2.11	Use complex roots of unity to solve geometric problems.	

Recap: Mod/ arg form

$$
z=x+i y
$$

$$
r=|z|=
$$

$\theta=\arg (z)=$
$\boldsymbol{x}=$
$y=$

$$
z=x+i y=
$$

$\boldsymbol{x}+\boldsymbol{i y}$	\boldsymbol{r}	$\boldsymbol{\theta}$	Mod-arg form
-1			
i			
$1+i$			
$-\sqrt{3}+i$			

Exponential Form

We've seen the Cartesian form a complex number $z=x+y i$ and the modulus-argument form $z=r(\cos \theta+i \sin \theta)$. But wait, there's a third form!

In the later chapter on Taylor expansions, you'll see that you that you can write functions as an infinitely long polynomial:

$$
\begin{array}{ccccc}
\cos x=1 & -\frac{x^{2}}{2!} & +\frac{x^{4}}{4!} & -\frac{x^{6}}{6!} & + \\
\sin x & =x & -\frac{x^{3}}{3!} & +\frac{x^{5}}{5!} \quad-\cdots \\
e^{x}= & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+
\end{array}
$$

It looks like the $\cos x$ and $\sin x$ somehow add to give e^{x}. The one problem is that the signs don't quite match up.

Exponential form $\quad z=r e^{i \theta}$

$\boldsymbol{x}+\boldsymbol{i y}$	Mod-arg form	Exp Form
-1		
$2-3 i$		
	$\sqrt{2}\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$	
		$z=\sqrt{2} e^{\frac{3 \pi i}{4}}$

Example

Use $e^{i \theta}=\cos \theta+i \sin \theta$ to show that $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$

Example 1

Prove that $1-\mathrm{e}^{\mathrm{i} \theta} \cos \theta=-\mathrm{i} \mathrm{e}^{\mathrm{i} \theta} \sin \theta$.

