Chapter 1
Complex Numbers

Chapter Overview
1. Exponential form of a complex number
2. Multiplying and dividing complex numbers
3. De Moivre’s Theorem
4. De Moivre’s for Trigonometric Identities
a) Expressing /  in terms of powers of 
b) Finding expressions for  and 
5. Roots
6. Sums of series
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Recap: Mod/ arg form
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Exponential Form
We’ve seen the Cartesian form a complex number  and the modulus-argument form . But wait, there’s a third form! 
In the later chapter on Taylor expansions, you’ll see that you that you can write functions as an infinitely long polynomial:




It looks like the  and  somehow add to give . The one problem is that the signs don’t quite match up.
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Exponential form       


Example
Use  to show that 
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Example 1

Prove that 1-¢"

cosf =i sing

Expand the left hand side

Solution :
using the definition of ¢

1-€"” cosf =1~(cos O +isin#)cos &

~cos’ 6 ~isinfcosd

sin0-isingosf =D Since the right hand side has a
=sin@(sin0~icosd) factorof sin 4, it seems

ible to replace 1~ cos’ &
—sin6[-i(cos0+isin0)] sensible to replace 1-cos’

with sin® 6
=-isinge"”
as required

Other examples of identities like this one include

(1+¢”)(1+e™) =2+ 2c0s0
(2+¢”)(2+€7)=5+4cos0

1+e? :Ze‘%msg

2ie% sin?
2

Try proving some of these for yourself. To do this you will need to use identities such
as 1+cos2a =2cos* @ and sin2a =2cosasina

Using complex numbers to sum real series.
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