1A/B Introducing i

- 1. Simplify
- a) (2+5i) + (7+3i)
- b) (2-5i) (5-11i)

- c) 6(1+3i)
- 2.
- a) Write $\sqrt{-36}$ in terms of i

b) Write V-28 in terms of i

3. Solve the Equation a) $x^2 + 9 = 0$

b) $x^2 + 6x + 25 = 0$

1C Multiplying Complex Numbers

- 1. Simplify
- a) (2+3i)(4+5i)

b) $(7-4i)^2$

c) (2-3i)(4-5i)(1+3i)

- 2. Simplify a) i^3

b) *i*⁴

c) (2*i*)⁵

1D Complex Conjugates

- 1. Write down the complex conjugate of:
- a) 2 + 3*i*
- b) 5-2*i*
- c) $1 i\sqrt{5}$
- 2. Find z + z*, and zz*, given that:
- a) z = 2 7i

b) $z = 2\sqrt{2} + i\sqrt{2}$

- 3. Write the following in the form a + bi
- a) $\frac{(10+5i)}{(1+2i)}$

b) $\frac{(5+4i)}{(2-3i)}$

<u>1E Complex Roots of Quadratics</u>

1. Find the quadratic equation that has roots 3 + 5i and 3 - 5i

<u>1F Complex Roots of Cubics & Quartics</u>

1. Given that -1 is a root of the equation:

$$x^3 - x^2 + 3x + k = 0$$

Find the other two roots of the equation.

Notes on Solutions for Cubic & Quartic Equations

2. Given that 3 + i is a root of the quartic equation:

$$2x^4 - 3x^3 - 39x^2 + 120x - 50 = 0$$

Solve the equation completely.