1A Exponential Form

1. Express the numbers following numbers in the modulus argument form:
a) $z_{1}=1+i \sqrt{3}$

b) $z_{2}=-3-3 i$

2. Express the complex number $\mathrm{z}=2-3 \mathrm{i}$ in the form $\mathrm{re}^{\mathrm{i} \theta}$, where $-\pi<\theta \leq \pi$

3. Express the following in the form $z=r e^{i \theta}$ where $-\pi<\theta \leq \pi$
a) $z=\sqrt{2}\left(\cos \left(\frac{\pi}{10}\right)+i \sin \left(\frac{\pi}{10}\right)\right)$
b) $z=5\left(\cos \left(\frac{\pi}{8}\right)-i \sin \left(\frac{\pi}{8}\right)\right)$
4. Express the following in the form $z=x+i y$ where $x \in \mathbb{R}$ and $y \in \mathbb{R}$

$$
z=\sqrt{2} e^{\frac{3 \pi}{4} i}
$$

5. Express the following in the form $r(\cos \theta+i \sin \theta)$, where $-\pi<\theta \leq \pi$

$$
z=2 e^{\frac{23 \pi}{5} i}
$$

6. Use: $e^{i \theta}=\cos \theta+i \sin \theta$ To show that: $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$

1B Multiplying \& Dividing Complex Numbers

1. Express the following calculation in the form $x+i y$:

$$
\frac{\sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)}{2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)}
$$

2. Express $2 e^{\frac{\pi i}{6}} \times \sqrt{3} e^{\frac{\pi i}{3}}$ in the form $x+i y$
3. $z=2+2 i, \operatorname{Im}(z w)=0$ and $|z w|=3|z|$

1C De Moivre's Theorem

1. Proof by Induction:
2. Simplify:

$$
\frac{\left(\cos \left(\frac{9 \pi}{17}\right)+i \sin \left(\frac{9 \pi}{17}\right)\right)^{5}}{\left(\cos \left(\frac{2 \pi}{17}\right)-i \sin \left(\frac{2 \pi}{17}\right)\right)^{3}}
$$

2. Express $(1+i \sqrt{3})^{7}$ in the form $x+i y$, where $x, y \in \mathbb{R}$

1D Using de Moivre to Prove Trigonometric Identities

1. Express $\cos 3 \theta$ using powers of $\cos \theta$.
2. Use De Moivre's theorem to show that:

$$
\cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1
$$

Further notes:

$$
z+\frac{1}{z}
$$

$$
z-\frac{1}{z}
$$

$$
z^{n}+\frac{1}{z^{n}}
$$

$$
z^{n}-\frac{1}{z^{n}}
$$

3. Express $\cos ^{5} \theta$ in the form $a \cos 5 \theta+b \cos 3 \theta+c \cos \theta$

Where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants to be found.
4.
a) Express $\sin ^{4} \theta$ in the form:

$$
d \cos 4 \theta+e \cos 2 \theta+f
$$

b) Hence, find the exact value of the following integral:

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta
$$

1E Part 1 Finite Summations

1. Given that $z=\cos \left(\frac{\pi}{n}\right)+i \sin \left(\frac{\pi}{n}\right)$, where n is a positive integer, show that:

$$
1+z+z^{2}+. .+z^{n-1}=1+\operatorname{icot}\left(\frac{\pi}{2 n}\right)
$$

Notes for $e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+. .+e^{n i \theta}$
2. $S=e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+. .+e^{8 i \theta}$, for $\theta \neq 2 n \pi$, where n is an integer
a) Show that

$$
S=\frac{e^{\frac{9 i \theta}{2}} \sin 4 \theta}{\sin \left(\frac{\theta}{2}\right)}
$$

Let: $P=\cos \theta+\cos 2 \theta+\cos 3 \theta+. .+\cos 8 \theta$ and $Q=\sin \theta+\sin 2 \theta+\sin 3 \theta+. .+\sin 8 \theta$
b) Use your answer to part a to show that $P=\cos \frac{9 \theta}{2} \sin 4 \theta \operatorname{cosec} \frac{\theta}{2}$, and find similar expressions for Q and $\frac{P}{Q}$

1E Part 2 Infinite Summations

1. $S=1+\frac{1}{2} e^{i \theta}+\frac{1}{4} e^{2 i \theta}+\frac{1}{8} e^{3 i \theta}+\cdots$
a) Show that

$$
S=\frac{4-2 \cos \theta+2 i \sin \theta}{5-4 \cos \theta}
$$

Let: $P=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta+\cdots$ and $Q=\frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta+\cdots$
b) Show that $S=P+Q i$
c) Hence, find trigonometric expressions for P and Q

1F nth Roots of Complex Numbers

1.

a) Solve the equation $z^{3}=1$ and represent your solutions on an Argand diagram.

b) Show that the three cube roots of 1 can be written as $1+\omega+\omega^{2}$ where $1+\omega+\omega^{2}=0$

Summary notes:

2. Solve the equation $z^{4}-2 \sqrt{3} i=2$

Give your answers in both the modulus-argument and exponential forms.
3. Solve the equation:

$$
z^{3}+4 \sqrt{2}+4 i \sqrt{2}=0
$$

1G Geometric Problems with Complex Numbers

1. Find the $6^{\text {th }}$ roots of the complex number $7+24 i$

2. Find the $6^{\text {th }}$ roots of unity

Summary notes:
3. The coordinate $(\sqrt{3}, 1)$ lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.

Find the coordinates of the other vertices of the triangle

