1) Complex numbers

1.1) Exponential form of complex numbers
1.2) Multiplying and dividing complex numbers
1.3) de Moivre's theorem
1.4) Trigonometric identities
1.5) Sums of series
1.6) nth roots of a complex number

1.7) Solving geometric problems

Worked example	Your turn
Express in the form $re^{i\theta}$, where	Express in the form $re^{i\theta}$, where
$-\pi < \theta \leq \pi$:	$-\pi < \theta \leq \pi$:
3 - 2i	2-3i
	$\sqrt{13}e^{-0.983i}$
1	- 1
	$e^{i\pi}$
-i	i
	$\frac{i\pi}{2}$
	e^2

 $-\pi < \theta \leq \pi$:

 $\sqrt{13}(\cos(0.983) + i\sin(0.983))$

 $\cos \pi + i \sin \pi$

Your turn

Express in the form $re^{i\theta}$, where

 $\sqrt{3}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{9}\right)$

 $\sqrt{3}\rho^{\frac{\pi i}{8}}$

 $\sqrt{13}(\cos(-0.983) + i\sin(-0.983))$

 $\sqrt{13}e^{-0.983i}$

 $\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$

Express in the form $re^{i\theta}$, where $-\pi < \theta \le \pi$:

$$\sqrt{2}\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$$

Express in the form $re^{i\theta}$, where $-\pi < \theta \le \pi$:

$$\sqrt{5}\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$$

$$\sqrt{5}e^{\frac{-\pi i}{3}}$$

$$\sqrt{3}\left(\cos\left(-\frac{\pi}{7}\right) - i\sin\left(-\frac{\pi}{7}\right)\right)$$

Express in the form x + iy, where $x, y \in \mathbb{R}$: $\sqrt{2}e^{\frac{3\pi i}{4}}$

$$x,y\in\mathbb{R}$$
:

$$\sqrt{2}e^{-\frac{3\pi i}{4}}$$

$$z = -1 - i$$

$$e^{i(0)}$$

$$z = 1$$

Express in the form $r(\cos\theta + i\sin\theta)$, where $-\pi < \theta \le \pi$:

Express in the form $r(\cos \theta + i \sin \theta)$, where $-\pi < \theta \le \pi$:

$$-\pi < \theta \le \pi:$$

$$4e^{\frac{33\pi i}{7}}$$

$$4(\cos\frac{5\pi}{7} + i\sin\frac{5\pi}{7})$$

$$3e^{\frac{-25\pi i}{8}}$$

1.2) Multiplying and dividing complex numbers Chapter CONTENTS

Worked example
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \times 5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

 $3\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right) \times 4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$

12*i*

$$3\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right) \times 4\left(\cos\frac{\pi}{12} - i\sin\frac{\pi}{12}\right)$$

$$6 + 6i\sqrt{3}$$

$$\frac{2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)}{5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}$$

$$\frac{3\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)}{4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)}$$

$$\frac{3}{8} + \frac{3\sqrt{3}}{8}$$

Express in the form
$$x + iy$$

$$2e^{\frac{\pi i}{6}} \times \sqrt{3}e^{\frac{\pi i}{3}}$$

$$2i\sqrt{3}$$

Express in the form x + iy

$$\frac{3e^{\frac{\pi i}{4}}}{6e^{\frac{\pi i}{12}}}$$

Express in the form x + iy

$$\frac{\sqrt{5}e^{-\frac{\pi i}{4}}}{7e^{\frac{\pi i}{2}}}$$

$$-\frac{\sqrt{10}}{14} - \frac{\sqrt{10}}{14}i$$

$$5e^{\frac{\pi i}{4}}$$

$$\sqrt{7}e^{-\frac{\pi i}{2}}$$

$$\frac{5e^{\frac{\pi i}{4}}}{7e^{-\frac{\pi i}{2}}}$$

Your turn $z = 5\sqrt{3} - 5i$

Find

(a) |z|

(b) arg(z) in terms of π

 $w = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

$$3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

Find

(c) $\left| \frac{w}{z} \right|$

(d) arg $\frac{w}{z}$

10

 π

$$Im(zw) = 0$$

 $|zw| = 3|z|$
Use geometrical reasoning to find
the two possibilities for w , giving
your answers in exponential form
 $w_1 = 3e^{-\frac{\pi i}{4}}, w_2 = 3e^{\frac{3\pi i}{4}}$

z = 2 + 2i

1.3) de Moivre's theorem

Chapter CONTENTS

Worked example	Your turn
Use de Moivre's theorem to express in the form $x + iy$, where $x, y \in \mathbb{R}$ $(\cos \theta + i \sin \theta)^5$	Use de Moivre's theorem to express in the form $x + iy$, where $x, y \in \mathbb{R}$ $(\cos \theta + i \sin \theta)^{7}$ $\cos 7\theta + i \sin 7\theta$
$(\cos 2\theta + i \sin 2\theta)^3$	$(\cos 3\theta + i \sin 3\theta)^5$ $\cos 15\theta + i \sin 15\theta$

Worked example	
Express in the form $e^{ni\theta}$	
$(\cos 5\theta + i \sin 5\theta)^3$	
$\overline{(\cos 3\theta + i \sin 3\theta)^7}$	
$(\cos 2\theta + i \sin 2\theta)^5$	
$\frac{1}{(\cos 7\theta - i \sin 7\theta)^3}$	

Express in the form $e^{ni\theta}$ $\frac{(\cos 3\theta + i \sin 3\theta)^7}{(\cos 5\theta + i \sin 5\theta)^4}$ $e^{i\theta}$

Your turn

Simplify

$$\frac{\left(\cos\frac{3\pi}{11} + i\sin\frac{3\pi}{11}\right)^2}{\left(\cos\frac{2\pi}{11} - i\sin\frac{2\pi}{11}\right)^{19}}$$

Simplify

$$\frac{\left(\cos\frac{9\pi}{17} + i\sin\frac{9\pi}{17}\right)^{5}}{\left(\cos\frac{2\pi}{17} - i\sin\frac{2\pi}{17}\right)^{3}}$$

Your turn Express in the form x + iy where $x, y \in \mathbb{R}$ $\left(1+\sqrt{3}\;i\right)^7$ $64 + 64\sqrt{3} i$

$$w = \sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

Giving your answer in the form a+ib, where $a,b \in \mathbb{R}$, find the exact value of:

$$w^6$$

$$z = \sqrt{5} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$$

Giving your answer in the form a+ib, where $a,b \in \mathbb{R}$, find the exact value of:

$$-\frac{25}{2} + \frac{25\sqrt{3}}{2}i$$

Worked example	Your turn
$w=-2-2\sqrt{3}i$ Using de Moivre's Theorem, find w^5	$z=-8+8\sqrt{3}i$ Using de Moivre's Theorem, find z^3 4096
w^4	

Worked example	Your turn
Use de Moivre's theorem to show that $(a + bi)^n - (a - bi)^n$ is imaginary for all integers n	Use de Moivre's theorem to show that $(a + bi)^n + (a - bi)^n$ is real for all integers n
	$(a+bi)^{n} + (a-bi)^{n}$ $= (re^{i\theta})^{n} - (re^{-i\theta})^{n}$ $= re^{in\theta} - re^{-in\theta}$ $= r^{n}(e^{in\theta} - e^{-in\theta})$ $= r^{n}(\cos n\theta + i \sin n\theta - (\cos n\theta - i \sin n\theta))$ $= r^{n}(2i \sin n\theta)$ $= 2r^{n} \sin n\theta (i)$

Your turn

Using Euler's relation, prove that if n is a positive integer,
$(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta)$

Using Euler's relation, prove that if
$$n$$
 is a positive integer,
$$(r(\cos\theta + i\sin\theta))^{-n} = r^{-n}(\cos(-n\theta) + i\sin(-n\theta))$$

$$\left(r(\cos\theta+i\sin\theta)\right)^{-n}$$

$$=(re^{i\theta})^{-n}$$

$$= r^{-n}e^{-in}$$

$$= r^{-n}(\cos(-n\theta) + i\sin(-n\theta))$$

Your turn

Without using Euler's relation, prove that if n is a positive

Without using Euler's relation, prove that if n is a positive integer, $(r(\cos\theta + i\sin\theta))^{-n} = r^{-n}(\cos(-n\theta) + i\sin(-n\theta))$

$$(r(\cos \theta + i\sin \theta))^{-n}$$

$$\left(r(\cos\theta+i\sin\theta)\right)^{-n}$$

$$=\frac{1}{\left(r(\cos\theta+i\sin\theta)\right)^n}$$

$$=\frac{1}{r^n(\cos n\theta + i\sin n\theta)}$$

$$= \frac{1}{r^n(\cos n\theta + i\sin n\theta)} \times \frac{\cos n\theta - i\sin n\theta}{\cos n\theta - i\sin n\theta}$$

$$= \frac{\cos n\theta - i \sin n\theta}{r^n(\cos^2 n\theta - i^2 \sin^2 n\theta)}$$

$$= \frac{\cos n\theta - i \sin n\theta}{r^n(\cos^2 n\theta + \sin^2 n\theta)}$$

$$= r^{-n}(\cos n\theta - i\sin n\theta)$$

$$= r^{-n}(\cos(-n\theta) + i\sin(-n\theta))$$

integer, $(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta)$

$$(r(\cos\theta + \iota\sin\theta)) = r''(\cos n\theta + \iota\sin n\theta)$$

1.4) Trigonometric identities

Chapter CONTENTS

Worked example
Use de Moivre's theorem to show that $\cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$

Use de Moivre's theorem to show that $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$

Worked example
Use de Moivre's theorem to show that $\sin 5\theta = 16 \sin^5 \theta - 20 \sin^3 \theta +$

 $5\sin\theta$

Your	turn

Use de Moivre's theorem to show that $\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$

Worked example	Worked	example
----------------	--------	---------

Use de Moivre's theorem to show that

$$\cos^6 \theta = \frac{1}{32} \cos 6\theta + \frac{3}{16} \cos 4\theta + \frac{15}{32} \cos 2\theta + \frac{5}{16}$$

Use de Moivre's theorem to show that

$$\cos^5 \theta = \frac{1}{16} \cos 5\theta + \frac{5}{16} \cos 3\theta + \frac{5}{8} \cos \theta$$

Use de Moivre's theorem to show that

$$\sin^5 \theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta$$

Use de Moivre's theorem to show that

$$\sin^4 \theta = \frac{1}{8} \cos 4\theta - \frac{1}{2} \cos 2\theta + \frac{3}{8}$$

Your turn

Use de Moivre's theorem to show that

$$\sin^{5}\theta = \frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin \theta$$

Hence find the exact value of

$$\int_0^{\frac{\pi}{2}} \sin^5 \theta$$

Use de Moivre's theorem to show that

$$\sin^4 \theta = \frac{1}{8} \cos 4\theta - \frac{1}{2} \cos 2\theta + \frac{3}{8}$$

Hence find the exact value of

$$\int_0^{\frac{\pi}{2}} \sin^4 \theta$$

$$\frac{3\pi}{2}$$

$$\frac{3\pi}{16}$$

Worked example	Your turn
Show that $32\cos^2\theta\sin^4\theta = \cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2$	Show that $32 \sin^2 \theta \cos^4 \theta = -\cos 6\theta - 2\cos 4\theta + \cos 2\theta + 2$
	Shown

Worked example Show that

$$32\cos^2\theta\sin^4\theta = \cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2$$

Hence, find the exact value of

$$\int_0^{\frac{\pi}{3}} \cos^2 \theta \sin^4 \theta$$

 $32\sin^2\theta\cos^4\theta = -\cos 6\theta - 2\cos 4\theta + \cos 2\theta + 2$

Show that

Hence, find the exact value of

$$\int_0^{\frac{\pi}{4}} \sin^2 \theta \cos^4 \theta$$

$$\frac{\pi}{64} + \frac{1}{48}$$

Your turn

Use de Moivre's theorem to show that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$

 $\cos 6\theta = 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1$ ansa find the six distinct solutions of the

Use de Moivre's theorem to show that

Hence find the distinct solutions of the equation $16x^5 - 20x^3 + 5x - \frac{1}{2} = 0$, giving your answers to 3 decimal places where necessary.

Hence find the six distinct solutions of the equation $32x^6 - 48x^4 + 18x^2 - \frac{3}{2} = 0$, giving your answers to 3 decimal places where necessary.

$$x = \pm 0.342, \pm 0.643, \pm 0.985$$

Your turn

Use de Moivre's theorem to show that
$$\cos 5\theta = \cos \theta \ (16\cos^4 \theta - 20\cos^2 \theta + 5)$$
 Hence solve for $0 \le \theta < \pi$ $\cos 5\theta - \cos \theta \cos 2\theta = 0$

Use de Moivre's theorem to show that
$$\sin 5\theta = \sin \theta \ (16\cos^4 \theta - 12\cos^2 \theta + 1)$$

Hence solve for $0 < \theta < \pi$

Hence solve for
$$0 \le \theta < \pi$$

$$\sin 5\theta + \cos \theta \sin 2\theta = 0$$

$$\theta = 0, \frac{\pi}{4}, \frac{3\pi}{4}, 1.209$$
 (3 dp) and 1.932 (3 dp)

1.5) Sums of series

Chapter CONTENTS

Your turn

$$\frac{5}{e^{2i\theta}-1}$$

$$\frac{3e^{i\theta}}{e^{4i\theta}-1}$$

$$\frac{2e^{i\theta}}{e^{6i\theta}-1}$$

$$\frac{3e^{-i\theta}}{2i\sin 2\theta}$$

$$\frac{11}{e^{\frac{i\theta}{3}} - 1}$$

$$11e^{-\frac{i\theta}{6}}$$

$$\frac{7}{e^{\frac{i\theta}{5}}-1}$$

$$\frac{1}{2i\sin\frac{\theta}{6}}$$

Your turn

$$S = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \dots + e^{6i\theta}, \text{ for } \theta \neq 2n\pi,$$

$$S = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \dots + e^{6i\theta}$$
, for $\theta \neq 2n\pi$, where n is an integer.

a) Show that
$$S = \frac{e^{\frac{7i\theta}{2}}\sin 3\theta}{\sin \frac{\theta}{2}}$$

$$S=e^{i\theta}+e^{2i\theta}+e^{3i\theta}+\cdots+e^{8i\theta}$$
, for $\theta\neq 2n\pi$, where n is an integer.

a) Show that
$$S = \frac{e^{\frac{9i\theta}{2}}\sin 4\theta}{\sin \frac{\theta}{2}}$$

Shown

Your turn

$$S=e^{i\theta}+e^{2i\theta}+e^{3i\theta}+\cdots+e^{6i\theta}$$
, for $\theta\neq 2n\pi$, where n is an integer.

a) Show that
$$S = \frac{e^{\frac{7i\theta}{2}}\sin 3\theta}{\sin \frac{\theta}{2}}$$

Let
$$P = \cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos 6\theta$$
 and $Q = \sin \theta + \sin 2\theta + \dots + \sin 6\theta$

(b) Use your answer to part **a** to show that
$$P=\cos\frac{7\theta}{2}\sin3\theta \ cosec\,\frac{\theta}{2}$$
 and find similar expressions for Q and $\frac{Q}{P}$

 $S=e^{i\theta}+e^{2i\theta}+e^{3i\theta}+\cdots+e^{8i\theta}$, for $\theta\neq 2n\pi$, where n is an integer.

a) Show that
$$S = \frac{e^{\frac{9i\theta}{2}}\sin 4\theta}{\sin \frac{\theta}{2}}$$

Let
$$P = \cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos 8\theta$$
 and $Q = \sin \theta + \sin 2\theta + \dots + \sin 8\theta$

(b) Use your answer to part **a** to show that $P=\cos\frac{9\theta}{2}\sin 4\theta \ cosec\frac{\theta}{2}$ and find similar expressions for Q and $\frac{Q}{P}$

$$Q = \sin\frac{9\theta}{2}\sin 4\theta \ cosec\frac{\theta}{2}$$
$$\frac{Q}{P} = \tan\frac{9\theta}{2}$$

Your turn

The convergent infinite series *C* and *S* are defined as

$$C = 1 + \frac{1}{5}\cos\theta + \frac{1}{25}\cos 2\theta + \frac{1}{125}\cos 3\theta + \cdots$$
$$S = \frac{1}{5}\sin\theta + \frac{1}{25}\sin 2\theta + \frac{1}{125}\sin 3\theta + \cdots$$

- a) Find an expression for C + iS
- b) Hence find an expression for C and S

The convergent infinite series *C* and *S* are defined as

$$C = 1 + \frac{1}{3}\cos\theta + \frac{1}{9}\cos 2\theta + \frac{1}{27}\cos 3\theta + \cdots$$
$$S = \frac{1}{3}\sin\theta + \frac{1}{9}\sin 2\theta + \frac{1}{27}\sin 3\theta + \cdots$$

- a) Find an expression for C + iS
- b) Hence find an expression for C and S

a)
$$C + iS = \frac{3}{3 - e^{i\theta}}$$

b)
$$C = \frac{9-3\cos\theta}{10-6\cos\theta}$$

$$S = \frac{3\sin\theta}{10 - 6\cos\theta}$$

The convergent infinite series C and S are defined as

$$C = 1 - \frac{1}{3}\cos\theta + \frac{1}{9}\cos 2\theta - \frac{1}{27}\cos 3\theta + \cdots$$
$$S = \frac{1}{3}\sin\theta - \frac{1}{9}\sin 2\theta + \frac{1}{27}\sin 3\theta + \cdots$$

By considering C - iS, show that $C = \frac{9+3\cos\theta}{10+6\cos\theta}$ and write down the corresponding expression for S

Your turn

The convergent infinite series *C* and *S* are defined as

$$C = 1 - \frac{1}{2}\cos\theta + \frac{1}{4}\cos 2\theta - \frac{1}{8}\cos 3\theta + \cdots$$
$$S = \frac{1}{2}\sin\theta - \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \cdots$$

By considering C - iS, show that $C = \frac{4+2\cos\theta}{5+4\cos\theta}$ and write down the corresponding expression for S

$$S = \frac{2\sin\theta}{5 + 4\cos\theta}$$

1.6) nth roots of a complex number Chapter CONTENTS

Solve

$$z^8 = 1$$

Express the roots in the form x + iy, where $x, y \in \mathbb{R}$

Solve

$$z^4 = 1$$

Express the roots in the form x + iy, where $x, y \in \mathbb{R}$

$$z_1 = 1$$

$$z_2 = i$$

$$z_3 = -1$$

$$z_4 = -i$$

Solve

$$z^7 - 1 = 0$$

Express the roots in the form x + iy, where $x, y \in \mathbb{R}$

Solve

$$z^5 - 1 = 0$$

Express the roots in the form x + iy, where $x, y \in \mathbb{R}$

$$z_1 = 1$$

$$z_2 = 0.309 + 0.951i$$

$$z_3 = -0.809 + 0.588i$$

$$z_4 = -0.809 - 0.588i$$

$$z_5 = 0.309 - 0.951i$$

Solve
$$z^3 = -1$$

Express the roots in the form $x + iy$, where $x, y \in \mathbb{R}$

Solve
$$z^3 = 1$$

Express the roots in the form $x + iy$, where $x, y \in \mathbb{R}$

$$z_{1} = 1$$

$$z_{2} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$z_{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

Find the cubic roots of unity, and the value of their sum.

Find the quintic roots of unity, and the value of their sum.

$$1, e^{\frac{2\pi}{5}i}, e^{\frac{4\pi}{5}i}, e^{\frac{-4\pi}{5}i}, e^{\frac{-2\pi}{5}i}$$

$$z^{5} - 1 = 0$$

$$(z - 1)(z^{4} + z^{3} + z^{2} + z + 1) = 0$$

$$z = e^{\frac{2\pi}{5}i}, \text{ so } z - 1 \neq 0$$

$$\therefore z^{4} + z^{3} + z^{2} + z + 1 = 0$$

Worked example	Your turn
Worked example Solve $z^3 = -1$ Express the roots in the form $x + iy$, where $x, y \in \mathbb{R}$ Represent your solutions on an Argand diagram	Your turn Solve $z^3=1$ Express the roots in the form $x+iy$, where $x,y\in\mathbb{R}$ Represent your solutions on an Argand diagram

Solve $z^4 = -2 + 2\sqrt{3} i$ Express the roots in the form $r(\cos \theta + i \sin \theta)$, where $-\pi < \theta \le \pi$

Solve
$$z^4 = 2 + 2\sqrt{3}i$$

Express the roots in the form $r(\cos\theta + i\sin\theta)$, where $-\pi < \theta \leq \pi$

$$r(\cos\theta + i\sin\theta), \text{ where } -\pi < \theta \le \pi$$

$$z_1 = \sqrt{2} \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12} \right)$$

$$z_2 = \sqrt{2} \left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12} \right)$$

$$z_3 = \sqrt{2} \left(\cos\left(-\frac{5\pi}{12} \right) + i\sin\left(-\frac{5\pi}{12} \right) \right)$$

$$z_4 = \sqrt{2} \left(\cos\left(-\frac{11\pi}{12} \right) + i\sin\left(-\frac{11\pi}{12} \right) \right)$$

Solve
$$z^3+32\sqrt{2}+32i\sqrt{2}=0$$

Express the roots in the form $re^{i\theta}$, where $r>0$ and $-\pi<\theta\leq\pi$

Solve
$$z^3 + 4\sqrt{2} + 4i\sqrt{2} = 0$$

Express the roots in the form $re^{i\theta}$, where $r>0$ and $-\pi<\theta\leq\pi$

$$z_1 = 2e^{-\frac{\pi i}{4}}$$
$$z_2 = 2e^{\frac{5\pi i}{12}}$$

$$z_3 = 2e^{-\frac{11\pi i}{12}}$$

Worked example	Your turn
Find the three roots of the equation $(z-1)^3 = -1$	Find the three roots of the equation $(z+1)^3 = -1$
Plot the points representing these three roots on an Argand diagram. Given that these three points lie on a circle, find its centre and radius	Plot the points representing these three roots on an Argand diagram. Given that these three points lie on a circle, find its centre and radius
	Centre (1,0); Radius 1

1.7) Solving geometric problems

Chapter CONTENTS

The point $P(\sqrt{3}, -1)$ lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.

- (a) Find the coordinates of the other vertices of the triangle.
- (b) Find the area of the triangle.

The point $P(\sqrt{3}, 1)$ lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.

(a) Find the coordinates of the other vertices

- (a) Find the coordinates of the other vertices of the triangle.
- (b) Find the area of the triangle.
- a) $(-\sqrt{3}, 1)$ and (0, -2)b) $3\sqrt{3}$

le Your turn

The point $P(1, -\sqrt{3})$ lies at one vertex of a regular pentagon. The centre of the polygon is at the origin.

Find the coordinates of the other vertices.

The point $P(-1,\sqrt{3})$ lies at one vertex of a regular pentagon. The centre of the polygon is at the origin.

Find the coordinates of the other vertices.
Round your answers to 2 decimal places.

$$(-1.96, 0.42)$$

 $(-0.21, -1.99)$
 $(1.83, -0.81)$
 $(1.34, 1.49)$