1) Complex numbers

- 1.1) Imaginary and complex numbers
- 1.2) Multiplying complex numbers
- 1.3) Complex conjugation
- 1.4) Roots of quadratic equations
- 1.5) Solving cubic and quartic equations

1.1) Imaginary and complex numbers **Chapter CONTENTS**

Worked example	Your turn
Write in terms of <i>i</i> : $\sqrt{-39}$	Write in terms of <i>i</i> : $\sqrt{-49}$ 7 <i>i</i>
$\sqrt{-40}$	$\sqrt{-20}$ $(2\sqrt{5})i$

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: (2 + 5i) + (3 + 4i)	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: (2 + 3i) + (4 + 5i)
	6 + 8 <i>i</i>
(2-5i) - (4-3i)	(2-3i) - (4-5i) -2+2i

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: 2(3 + 4i)	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: -8(9 + 10i)
	-72 - 80 <i>i</i>
-5(6 - 7 <i>i</i>)	

Worked example	Your turn
Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: $\frac{6 - 8i}{2}$	Simplify, giving your answers in the form $a + bi$, where $a, b \in \mathbb{R}$: $\frac{15 - 12i}{3}$ $5 - 4i$
$\frac{-7+21i}{7}$	

Worked example	Your turn
Given that $z_1 = a + 2i$, $z_2 = -3 + bi$, and $z_2 - z_1 = 5 + 7i$, find a and b , where $a, b \in \mathbb{R}$	Given that $z_1 = a + 5i$, $z_2 = -2 + 7i$, and $z_2 - z_1 = 3 + 11i$, find a and b , where $a, b \in \mathbb{R}$
	a = -5, b = 16

Worked example	Your turn
Given that $z = a + bi$, and $w = a - bi$, where $a, b \in \mathbb{R}$, show that: z + w is always real	Given that $z = a + bi$, and $w = a - bi$, where $a, b \in \mathbb{R}$, show that: z - w is always imaginary (a + bi) - (a - bi) = a + bi - a + bi = 2bi = (2b)i

Worked example	Your turn
Solve: $z^2 = -9$	Solve: $z^2 + 25 = 0$ $z = \pm 5i$
$z^2 + 16 = 0$	

Worked example	Your turn
Solve: $(z+2)^2 + 9 = 0$	Solve: $(z + 4)^2 + 25 = 0$ $z = -4 \pm 5i$
$(z-3)^2 + 16 = 0$	

Worked example	Your turn
Solve: $z^2 + 4z + 13 = 0$	Solve: $z^{2} + 8z + 41 = 0$ $z = -4 \pm 5i$
$z^2 - 6z + 25 = 0$	

	Worked example	Your turn
Solve:	$z^2 + 3z + 13 = 0$	Solve: $2z^2 - 8z + 41 = 0$ $z = 2 \pm \frac{\sqrt{66}}{2}i$
	$3z^2 - 7z + 25 = 0$	

Worked example	Your turn
The equation $z^2 + bz + 31 = 0$, where $b \in \mathbb{R}$, has distinct, non-real complex roots. Find the range of possible values of b	The equation $z^2 + bz + 13 = 0$, where $b \in \mathbb{R}$, has distinct, non-real complex roots. Find the range of possible values of b
	$-2\sqrt{13} < b < 2\sqrt{13}$

1.2) Multiplying complex numbers Chapter CONTENTS

Worked example	Your turn
Determine the value of: <i>i</i> ¹⁰¹	Determine the value of: i^{10007} -i
i ²⁰²	
i ³⁰⁰³	

Worked example	Your turn
Express each of the following in the form $a + bi$, where a, b are integers: (2 + 3i)(2 - 3i)	Express each of the following in the form $a + bi$, where a, b are integers: (4 + 5i)(4 - 5i)
	29
(2+3i)(3+2i)	(4+5i)(5+4i)
	411
$(2-3i)^2$	$(4-5i)^2$
	41 - 40i

Your turn
Simplify, giving your answer in the form $a + hi$
$(1+i)^5$
-4 - 4i

Worked example	Your turn
Given that (a + 5i)(1 + bi) = 38 - 16i, find the possible values of a and b	Given that (a + 5i)(1 + bi) = 22 - 16i, find the values of a and b
	a = 7, b = -3 $a = 15, b = -\frac{7}{5}$

1.3) Complex conjugation

Chapter CONTENTS

Worked example	Your turn
Write the complex conjugate for: z = 2 + 3i	Write the complex conjugate for: z = -5 - 4i
	$z^* = -5 + 4i$
z = -2 - 3i	
z = 3i - 2	

Worked example	Your turn
Write in the form $a + bi$: $\frac{5 + 4i}{2 + 3i}$	Write in the form $a + bi$: $\frac{5 + 4i}{2 - 3i}$
	$-\frac{2}{13}+\frac{23}{13}i$
$\frac{2-3i}{4-5i}$	

Worked example	Your turn
Given that $z_1 = 2 + 3i$, $z_2 = \frac{5 - 12i}{z_1}$,	Given that $z_1 = 3 + 2i$, $z_2 = \frac{12-5i}{z_1}$,
find z_2 in the form $a + ib$, where a and b	find z_2 in the form $a + ib$, where a and b
are real	are real
	2 - 3i

Worked example	Your turn
Given that $z_1 = p - 3i$, $z_2 = 2 - 5i$, and that p is an integer, find $\frac{z_1}{z_2}$ in the form $a + ib$, where a and b are rational and given in terms of p	Given that $z_1 = p - 5i$, $z_2 = 2 + 3i$, and that p is an integer, find $\frac{z_1}{z_2}$ in the form $a + ib$, where a and b are rational and given in terms of p
	$\frac{2p - 15}{13} + \frac{-10 - 3p}{13}i$

Worked example	Your turn
$z = \frac{p+2i}{p-5i}, p \in \mathbb{R}, p > 0$ Given that the real part of z is $\frac{6}{41}$, find the value of p	$z = \frac{p+3i}{p-7i}, p \in \mathbb{R}, p > 0$ Given that the real part of z is $\frac{2}{37}$, find the value of p
	p = 5

Worked example	Your turn
Given that $z = x + iy$, where $x, y \in \mathbb{R}$, find the value of x and y such that: $(3 - i)z^* + 2iz = -9 - 13i$ where z^* is the complex conjugate of z	Given that $z = x + iy$, where $x, y \in \mathbb{R}$, find the value of x and y such that: $(3 - i)z^* + 2iz = 9 - i$ where z^* is the complex conjugate of z
	x = 5, y = 2

1.4) Roots of quadratic equations Chapter CONTENTS

Worked example	Your turn
Given that $\alpha = 5 + 3i$ is one of the roots of a quadratic equation with real coefficients, (a) state the value of the other root, β . (b) find the quadratic equation.	Given that $\alpha = 7 + 2i$ is one of the roots of a quadratic equation with real coefficients, (a) state the value of the other root, β . (b) find the quadratic equation. (a) $\beta = 7 - 2i$ (b) $z^2 - 14z + 53 = 0$

Worked example	Your turn
Given that $\alpha = 5 + qi$ is one of the roots of	Given that $\alpha = 5 + qi$ is one of the roots of
the equation $z^2 - 5pz + 41 = 0$, where p	the equation $z^2 - 2pz + 61 = 0$, where p
and q are positive real constants, find the	and q are positive real constants, find the
value of p and the value of q	value of p and the value of q

p=5 , q=6

1.5) Solving cubic and quartic equations Chapter CONTENTS

Worked example	Your turn
Given that -2 is a root of the cubic equation $z^3 - 2z^2 - 3z + k = 0$ (a) Find the value of k (b) Find the other two roots	 Given that -1 is a root of the cubic equation z³ - z² + 3z + k = 0 (a) Find the value of k (b) Find the other two roots
	(a) $k = 5$ (b) $1 + 2i$ and $1 - 2i$

Worked example	Your turn
Given that $3 + i$ is a root of the quartic equation $2z^4 - 37z^3 + 221z^2 - 380z - 250 = 0$, solve the equation completely.	Given that $3 + i$ is a root of the quartic equation $2z^4 - 3z^3 - 39z^2 + 120z - 50 = 0$, solve the equation completely. $z_1 = -5$ $z_2 = \frac{1}{2}$ $z_3 = 3 + i$ $z_4 = 3 - i$

Worked example	Your turn
Show that $z^2 + 9$ is a factor of $z^4 - 8z^3 + 26z^2 - 72z + 153$ Hence solve the equation $z^4 - 8z^3 + 26z^2 - 72z + 153 = 0$	Show that $z^2 + 4$ is a factor of $z^4 - 2z^3 + 21z^2 - 8z + 68$ Hence solve the equation $z^4 - 2z^3 + 21z^2 - 8z + 68 = 0$ $z_1 = 2i$ $z_2 = -2i$ $z_3 = 1 + 4i$ $z_4 = 1 - 4i$

Worked example	Your turn
Given that 5 and $4 + 3i$ are roots of the equation $x^3 - 13x^2 + cx + d = 0$ $c, d \in \mathbb{R}$ (a) Write down the other complex root (b) Find the value of c and the value of d	Given that 2 and 5 + 2 <i>i</i> are roots of the equation $x^3 - 12x^2 + cx + d = 0$ $c, d \in \mathbb{R}$ (a) Write down the other complex root (b) Find the value of <i>c</i> and the value of <i>d</i> (a) 5 - 2 <i>i</i> (b) $c = 49, d = -58$

Worked example	Your turn
Solve: $z^4 = 1$	Solve: $z^4 = 81$
	$z_1 = 3$ $z_2 = -3$ $z_3 = 3i$ $z_4 = 1 - 4i$
$z^4 = 16$	

Worked example	Your turn
$f(z) = z^3 + 4z^2 + kz + 36, k \in \mathbb{R}$ Given that $f(3i) = 0$, find the value of k and the other two roots of the equation	$f(z) = z^3 + 3z^2 + kz + 48, k \in \mathbb{R}$ Given that $f(4i) = 0$, find the value of k and the other two roots of the equation
	k = 16
	-4i and -3

Worked example	Your turn
Find the square root of $3 + 4i$	Find the square root of $5 + 12i$
	3 - 2i, -3 + 2i
Find the square root of <i>i</i>	