1) Complex numbers

1.1) Imaginary and complex numbers
1.2) Multiplying complex numbers
1.3) Complex conjugation
1.4) Roots of quadratic equations
1.5) Solving cubic and quartic equations
1.1) Imaginary and complex numbers Chapter CONTENTS

Worked example

Your turn

Write in terms of i :
$\sqrt{-39}$
$\sqrt{-40}$

Write in terms of i :

$$
\sqrt{-49}
$$

$7 i$
$\sqrt{-20}$
$(2 \sqrt{5}) i$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$(2+5 i)+(3+4 i)$

$$
(2-5 i)-(4-3 i)
$$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$(2+3 i)+(4+5 i)$

$$
6+8 i
$$

$$
\begin{gathered}
(2-3 i)-(4-5 i) \\
-2+2 i
\end{gathered}
$$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:

$$
2(3+4 i)
$$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:

$$
-8(9+10 i)
$$

$$
-72-80 i
$$

Your turn

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$: $\frac{6-8 i}{2}$
$\frac{-7+21 i}{7}$

Simplify, giving your answers in the form $a+b i$, where $a, b \in \mathbb{R}$:
$\frac{15-12 i}{3}$
$5-4 i$

Your turn

Given that $z_{1}=a+2 i, z_{2}=-3+$ $b i$, and $z_{2}-z_{1}=5+7 i$, find a and b, where $a, b \in \mathbb{R}$

Given that $z_{1}=a+5 i, z_{2}=-2+$
$7 i$, and $z_{2}-z_{1}=3+11 i$, find a and b, where $a, b \in \mathbb{R}$

$$
a=-5, b=16
$$

Given that $\mathrm{z}=a+b i$, and $w=a-b i$, where $a, b \in \mathbb{R}$, show that:
$z+w$ is always real

Given that $\mathrm{z}=a+b i$, and $w=a-b i$, where $a, b \in \mathbb{R}$, show that:
$z-w$ is always imaginary

$$
\begin{aligned}
& (a+b i)-(a-b i) \\
= & a+b i-a+b i \\
= & 2 b i \\
= & (2 b) i
\end{aligned}
$$

$$
\begin{gathered}
z^{2}+25=0 \\
z= \pm 5 i
\end{gathered}
$$

$$
\begin{gathered}
(z+4)^{2}+25=0 \\
z=-4 \pm 5 i
\end{gathered}
$$

$$
\begin{gathered}
z^{2}+8 z+41=0 \\
z=-4 \pm 5 i
\end{gathered}
$$

Worked example
Solve:

$$
z^{2}+3 z+13=0
$$

$$
3 z^{2}-7 z+25=0
$$

Solve:

$$
\begin{gathered}
2 z^{2}-8 z+41=0 \\
z=2 \pm \frac{\sqrt{66}}{2} i
\end{gathered}
$$

The equation $z^{2}+b z+31=0$, where $b \in$ \mathbb{R}, has distinct, non-real complex roots. Find the range of possible values of b

The equation $z^{2}+b z+13=0$, where $b \in$ \mathbb{R}, has distinct, non-real complex roots. Find the range of possible values of b

$$
-2 \sqrt{13}<b<2 \sqrt{13}
$$

1.2) Multiplying complex numbers

Your turn

Determine the value of:
i^{2}
Determine the value of:

$$
\begin{gathered}
i^{10} \\
-1 \\
i^{7} \\
-i \\
\\
i^{40} \\
1 \\
(2 i)^{5} \\
32 i
\end{gathered}
$$

Determine the value of:
i^{101}
i^{202}
i^{3003}

Your turn

Express each of the following in the form $a+b i$, where a, b are integers:
$(2+3 i)(2-3 i)$
$(2+3 i)(3+2 i)$

Express each of the following in the form $a+b i$, where a, b are integers:

$$
(4+5 i)(4-5 i)
$$

$$
29
$$

$$
(4+5 i)(5+4 i)
$$

$$
41 i
$$

$$
(4-5 i)^{2}
$$

$$
41-40 i
$$

Your turn

Simplify, giving your answer in the form $a+b i:$
$(1+i)^{3}$

Simplify, giving your answer in the form $a+b i$:

$$
\begin{gathered}
(1+i)^{5} \\
-4-4 i
\end{gathered}
$$

Your turn

Given that
$(a+5 i)(1+b i)=38-16 i$, find the possible values of a and b

Given that
$(a+5 i)(1+b i)=22-16 i$, find the values of a and b

$$
\begin{gathered}
a=7, b=-3 \\
a=15, b=-\frac{7}{5}
\end{gathered}
$$

Write the complex conjugate for:
$z=2+3 i$
$z=-2-3 i$
$z=3 i-2$

Write the complex conjugate for:

$$
\begin{gathered}
z=-5-4 i \\
z^{*}=-5+4 i
\end{gathered}
$$

Your turn

Write in the form $a+b i$:
$\frac{5+4 i}{2+3 i}$
Write in the form $a+b i$:

$$
\begin{gathered}
\frac{5+4 i}{2-3 i} \\
-\frac{2}{13}+\frac{23}{13} i
\end{gathered}
$$

Your turn

Given that $z_{1}=2+3 i, z_{2}=\frac{5-12 i}{z_{1}}$,
find z_{2} in the form $a+i b$, where a and b are real

Given that $z_{1}=3+2 i, z_{2}=\frac{12-5 i}{z_{1}}$,
find z_{2} in the form $a+i b$, where a and b are real

Given that $z_{1}=p-3 i, z_{2}=2-5 i$, and that p is an integer, find $\frac{z_{1}}{z_{2}}$ in the form
$a+i b$, where a and b are rational and given in terms of p

Given that $z_{1}=p-5 i, z_{2}=2+3 i$, and that p is an integer, find $\frac{z_{1}}{z_{2}}$ in the form
$a+i b$, where a and b are rational and given in terms of p

$$
\frac{2 p-15}{13}+\frac{-10-3 p}{13} i
$$

Your turn

$$
z=\frac{p+2 i}{p-5 i}, p \in \mathbb{R}, p>0
$$

Given that the real part of z is $\frac{6}{41}$, find the value of p

$$
z=\frac{p+3 i}{p-7 i}, p \in \mathbb{R}, p>0
$$

Given that the real part of z is $\frac{2}{37}$, find the value of p

$$
p=5
$$

Given that $z=x+i y$, where $x, y \in \mathbb{R}$, find the value of x and y such that:

$$
(3-i) z^{*}+2 i z=-9-13 i
$$

where z^{*} is the complex conjugate of z

Given that $z=x+i y$, where $x, y \in \mathbb{R}$, find the value of x and y such that:

$$
(3-i) z^{*}+2 i z=9-i
$$

where z^{*} is the complex conjugate of z

$$
x=5, y=2
$$

Your turn

Given that $\alpha=5+3 i$ is one of the roots of a quadratic equation with real coefficients, (a) state the value of the other root, β.
(b) find the quadratic equation.

Given that $\alpha=7+2 i$ is one of the roots of a quadratic equation with real coefficients,
(a) state the value of the other root, β.
(b) find the quadratic equation.
(a) $\beta=7-2 i$
(b) $z^{2}-14 z+53=0$

Given that $\alpha=5+q i$ is one of the roots of the equation $z^{2}-5 p z+41=0$, where p and q are positive real constants, find the value of p and the value of q

Given that $\alpha=5+q i$ is one of the roots of the equation $z^{2}-2 p z+61=0$, where p and q are positive real constants, find the value of p and the value of q

$$
p=5, q=6
$$

1.5) Solving cubic and quartic equationschapter CONTENTS

Given that -2 is a root of the cubic equation

$$
z^{3}-2 z^{2}-3 z+k=0
$$

(a) Find the value of k
(b) Find the other two roots

Given that -1 is a root of the cubic equation

$$
z^{3}-z^{2}+3 z+k=0
$$

(a) Find the value of k
(b) Find the other two roots
(a) $k=5$
(b) $1+2 i$ and $1-2 i$

Given that $3+i$ is a root of the quartic equation
$2 z^{4}-37 z^{3}+221 z^{2}-380 z-250=0$, solve the equation completely.

Given that $3+i$ is a root of the quartic equation
$2 z^{4}-3 z^{3}-39 z^{2}+120 z-50=0$, solve the equation completely.

$$
\begin{aligned}
z_{1} & =-5 \\
z_{2} & =\frac{1}{2} \\
z_{3} & =3+i \\
z_{4} & =3-i
\end{aligned}
$$

Show that $z^{2}+9$ is a factor of

$$
z^{4}-8 z^{3}+26 z^{2}-72 z+153
$$

Hence solve the equation

$$
z^{4}-8 z^{3}+26 z^{2}-72 z+153=0
$$

Show that $z^{2}+4$ is a factor of

$$
z^{4}-2 z^{3}+21 z^{2}-8 z+68
$$

Hence solve the equation

$$
z^{4}-2 z^{3}+21 z^{2}-8 z+68=0
$$

$$
z_{1}=2 i
$$

$$
z_{2}=-2 i
$$

$$
z_{3}=1+4 i
$$

$$
z_{4}=1-4 i
$$

Given that 5 and $4+3 i$ are roots of the equation

$$
x^{3}-13 x^{2}+c x+d=0 \quad c, d \in \mathbb{R}
$$

(a) Write down the other complex root
(b) Find the value of c and the value of d

Given that 2 and $5+2 i$ are roots of the equation

$$
x^{3}-12 x^{2}+c x+d=0 \quad c, d \in \mathbb{R}
$$

(a) Write down the other complex root
(b) Find the value of c and the value of d
(a) $5-2 i$
(b) $c=49, d=-58$

Solve:

$$
z^{4}=81
$$

$z_{1}=3$
$z_{2}=-3$
$z_{3}=3 i$
$z_{4}=1-4 i$

Your turn

$$
f(z)=z^{3}+4 z^{2}+k z+36, k \in \mathbb{R}
$$

Given that $f(3 i)=0$, find the value of k and the other two roots of the equation

$$
f(z)=z^{3}+3 z^{2}+k z+48, k \in \mathbb{R}
$$

Given that $f(4 i)=0$, find the value of k and the other two roots of the equation

$$
k=16
$$

$$
-4 i \text { and }-3
$$

Your turn

Find the square root of $3+4 i$
Find the square root of $5+12 i$

$$
3-2 i,-3+2 i
$$

