Question	Scheme	Marks	AOs
1	$\frac{1}{(r+1)(r+3)} \equiv \frac{A}{(r+1)} + \frac{B}{(r+3)} \Longrightarrow A = \dots, B = \dots$	M1	3.1a
	$\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{1}{2 \times 2} - \frac{1}{2 \times 4} + \frac{1}{2 \times 3} - \frac{1}{2 \times 5} + \dots + \frac{1}{2n} - \frac{1}{2(n+2)} + \frac{1}{2(n+1)} - \frac{1}{2(n+3)}$	M1	2.1
	$=\frac{1}{4}+\frac{1}{6}-\frac{1}{2(n+2)}-\frac{1}{2(n+3)}$	A1	2.2a
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{12(n+2)(n+3)}$	M1	1.1b
	$=\frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
	Alternative by induction:		
	$n = 1 \Longrightarrow \frac{1}{8} = \frac{a+b}{12\times3\times4}, n = 2 \Longrightarrow \frac{1}{8} + \frac{1}{15} = \frac{2(2a+b)}{12\times4\times5}$ $a+b=18, 2a+b=23 \Longrightarrow a=b=$	M1	3.1a
	Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)}$		
	$\sum_{r=1}^{k+1} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)}$	M1	2.1
	$\frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)} = \frac{k(5k+13)(k+4)+12(k+3)}{12(k+2)(k+3)(k+4)}$	A1	2.2a
	$=\frac{5k^3+33k^2+52k+12k+36}{12(k+2)(k+3)(k+4)}=\frac{(k+1)(k+2)(5k+18)}{12(k+2)(k+3)(k+4)}$	M1	1.1b
	$= \frac{(\underline{k+1})(5(\underline{k+1})+13)}{12(\underline{k+1}+2)(\underline{k+1}+3)}$ So true for $n = k+1$ So $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
		(5 n	narks)

Paper 1: Core Pure Mathematics 1 Mark Scheme

Notes: Main Scheme M1: Valid attempt at partial fractions M1: Starts the process of differences to identify the relevant fractions at the start and end A1: Correct fractions that do not cancel M1: Attempt common denominator

A1: Correct answer

Alternative by Induction:

M1: Uses n = 1 and n = 2 to identify values for a and b

- M1: Starts the induction process by adding the $(k + 1)^{\text{th}}$ term to the sum of k terms
- A1: Correct single fraction
- M1: Attempt to factorise the numerator
- A1: Correct answer and conclusion

Quest	tion	Scheme	Marks	AOs
2		When $n = 1$, $2^{3n+1} + 3(5^{2n+1}) = 16 + 375 = 391$	D1	2.20
		$391 = 17 \times 23$ so the statement is true for $n = 1$	DI	2.2a
		Assume true for $n = k$ so $2^{3k+1} + 3(5^{2k+1})$ is divisible by 17	M1	2.4
		$f(k+1) - f(k) = 2^{3k+4} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})$	M1	2.1
		$= 7 \times 2^{3k+1} + 7 \times 3(5^{2k+1}) + 17 \times 3(5^{2k+1})$		
		$=7f(k)+17\times 3(5^{2k+1})$	A1	1.1b
		$f(k+1) = 8f(k) + 17 \times 3(5^{2k+1})$	A1	1.1b
		If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n	A1	2.4
			(6)	
			(6 n	narks)
Notes	5:			
B1:	Show	we the statement is true for $n = 1$		
M1:	Assu	times the statement is true for $n = k$		
M1:	Atte	mpts $f(k+1) - f(k)$		
A1:	Corr	ect expression in terms of $f(k)$		
A1:	Corr	ect expression in terms of $f(k)$		
A1:	Obtains a correct expression for $f(k + 1)$			
A1:	Correct complete conclusion			

Quest	tion	Scheme	Marks	AOs
3		z = 3 - 2i is also a root	B1	1.2
		$(z - (3 + 2i))(z - (3 - 2i)) = \dots$ or Sum of roots = 6, Product of roots = 13 \Rightarrow	M1	3.1a
		$= z^2 - 6z + 13$	A1	1.1b
		$(z^4 + az^3 + 6z^2 + bz + 65) = (z^2 - 6z + 13)(z^2 + cz + 5) \Rightarrow c = \dots$	M1	3.1a
		$z^2 + 2z + 5 = 0$	A1	1.1b
		$z^2 + 2z + 5 = 0 \Longrightarrow z = \dots$	M1	1.1a
		$z = -1 \pm 2i$	A1	1.1b
		Im (-1, 2) (3, 2)	B1 $3 \pm 2i$ Plotted correctly	1.1b
		(-1, -2) (3, -2)	B1ft $-1 \pm 2i$ Plotted correctly	1.1b
		I	(9 n	narks)
Notes	3:			
BI: M1: A1: M1·	Iden Uses Corr	titles the complex conjugate as another root s the conjugate pair and a correct method to find a quadratic factor ect quadratic s the given quartic and their quadratic to identify the value of c		
A1: M1: A1:	Corr Solv Corr	rect 3TQ res their second quadratic rect second conjugate pair		
B1: B1ft:	First Seco conj	conjugate pair plotted correctly and labelled ond conjugate pair plotted correctly and labelled (Follow through the ugate pair)	eir second	

Ques	tion Scheme	Marks	AOs
4	$4 + \cos 2\theta = \frac{9}{2} \Longrightarrow \theta = \dots$	M1	3.1a
	$\theta = \frac{\pi}{6}$	A1	1.1b
	$\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta$	M1	3.1a
	$\cos^2 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Longrightarrow A = \frac{1}{2}\int \left(16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta\right) d\theta$	M1	3.1a
	$=\frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right]$	A1	1.1b
	Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2} \left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0) \right]$	M1	1.1b
	Area of triangle = $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$	M1	3.1a
	Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$	M1	1.1b
	$=\frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right)$	A1	1.1b
		(9 m	narks)
Notes	S:		
M1:	Realises the angle for A is required and attempts to find it		
A1:	Correct angle	• 0	
M1:	Uses a correct area formula and squares r to achieve a 3TQ integrand in c	os 2θ	-
M1:	Use of the correct double angle identity on the integrand to achieve a suita	able form f	or
	integration		

- A1: Correct integration
- M1: Correct use of limits
- M1: Identifies the need to subtract the area of a triangle and so finds the area of the triangle
- M1: Complete method for the area of *R*
- A1: Correct final answer

Quest	ion Scheme	Marks	AOs
5(a) Pond contains $1000 + 5t$ litres after t days	M1	3.3
	If x is the amount of pollutant in the pond after t days		
	Rate of pollutant out = $20 \times \frac{x}{1000 + 5t}$ g per day	M1	3.3
	Rate of pollutant in = 25×2 g = 50g per day	B1	2.2a
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t} *$	A1*	1.1b
		(4)	
(b)	$I = e^{\int \frac{4}{200+t} dt} = (200+t)^4 \Longrightarrow x (200+t)^4 = \int 50(200+t)^4 dt$	M1	3.1b
	$x(200+t)^{4} = 10(200+t)^{5} + c$	A1	1.1b
	$x = 0, t = 0 \Longrightarrow c = -3.2 \times 10^{12}$	M1	3.4
	$t = 8 \Rightarrow x = 10(200+8) - \frac{3.2 \times 10^{12}}{(200+8)^4}$	M1	1.1b
	= 370g	A1	2.2b
		(5)	
(c)	 e.g. The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry The rate of leaking could be made to vary with the volume of water in the pond 	B1	3.5c
		(1)	
		(10 n	narks)
Notes	:		
(a) M1: M1: B1: A1*:	Forms an expression of the form $1000 + kt$ for the volume of water in the pond at time <i>t</i> Expresses the amount of pollutant out in terms of <i>x</i> and <i>t</i> Correct interpretation for pollutant entering the pond Puts all the components together to form the correct differential equation		ne <i>t</i>
(b) M1: A1: M1: M1: A1:	Uses the model to find the integrating factor and attempts solution of their differential equation Correct solution Interprets the initial conditions to find the constant of integration Uses their solution to the problem to find the amount of pollutant after 8 days Correct number of grams		
(c) B1:	Suggests a suitable refinement to the model		

Quest	tion	Scheme	Marks	AOs
6(a	ı)	$f(x) = \frac{x+2}{x^2+9} = \frac{x}{x^2+9} + \frac{2}{x^2+9}$	B1	3.1a
		$\int \frac{x}{x^2 + 9} \mathrm{d}x = k \ln \left(x^2 + 9 \right) (+c)$	M1	1.1b
		$\int \frac{2}{x^2 + 9} \mathrm{d}x = k \arctan\left(\frac{x}{3}\right)(+c)$	M1	1.1b
		$\int \frac{x+2}{x^2+9} \mathrm{d}x = \frac{1}{2} \ln \left(x^2 + 9 \right) + \frac{2}{3} \arctan \left(\frac{x}{3} \right) + c$	A1	1.1b
			(4)	
(b))	$\int_{0}^{3} f(x) dx = \left[\frac{1}{2}\ln(x^{2}+9) + \frac{2}{3}\arctan\left(\frac{x}{3}\right)\right]_{0}^{3}$ $= \frac{1}{2}\ln 18 + \frac{2}{3}\arctan\left(\frac{3}{3}\right) - \left(\frac{1}{2}\ln 9 + \frac{2}{3}\arctan(0)\right)$	M1	1.1b
		$=\frac{1}{2}\ln\frac{18}{9} + \frac{2}{3}\arctan\left(\frac{3}{3}\right)$		
		Mean value = $\frac{1}{3-0} \left(\frac{1}{2} \ln 2 + \frac{\pi}{6} \right)$	M1	2.1
		$\frac{1}{6}\ln 2 + \frac{1}{18}\pi^*$	A1*	2.2a
			(3)	
(c))	$\frac{1}{6}\ln 2 + \frac{1}{18}\pi + \ln k$	M1	2.2a
		$\frac{1}{6}\ln 2k^6 + \frac{1}{18}\pi$	A1	1.1b
			(2)	
Nete-			(9 n	narks)
(a) B1: M1: M1: A1:	Split Reco Reco Both inclu	s the fraction into two correct separate expressions ognises the required form for the first integration ognises the required form for the second integration expressions integrated correctly and added together with constant of ided	integratio	n
(b) M1: M1: A1*:	Uses limits correctly and combines logarithmic terms Correctly applies the method for the mean value for their integration Correct work leading to the given answer			
(c) M1: A1:	Real Com	ises that the effect of the transformation is to increase the mean value bines ln's correctly to obtain the correct expression	by ln k	

Question	Scheme	Marks	AOs
8	$2+4\lambda-2(4-2\lambda)-6+\lambda=6 \Longrightarrow \lambda=\dots$	M1	1.1b
	$\lambda = 2 \Rightarrow$ Required point is $(2+2(4), 4+2(-2), -6+2(1))$ (10, 0, -4)	A1	1.1b
	$2+t-2(4-2t)-6+t=6 \Longrightarrow t=\dots$	M1	3.1a
	t = 3 so reflection of $(2, 4, -6)$ is $(2+6(1), 4+6(-2), -6+6(1))$	M1	3.1a
	(8, -8, 0)	A1	1.1b
	$ \begin{pmatrix} 10\\0\\-4 \end{pmatrix} - \begin{pmatrix} 8\\-8\\0 \end{pmatrix} = \begin{pmatrix} 2\\8\\-4 \end{pmatrix} $	M1	3.1a
	$\mathbf{r} = \begin{pmatrix} 10\\0\\-4 \end{pmatrix} + k \begin{pmatrix} 1\\4\\-2 \end{pmatrix} \text{ or equivalent e.g. } \begin{pmatrix} 10\\0\\-4 \end{pmatrix} \times \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = 0$	A1	2.5
		(7)	
		(7 n	1arks)

Notes:

- M1: Substitutes the parametric equation of the line into the equation of the plane and solves for λ
- A1: Obtains the correct coordinates of the intersection of the line and the plane
- M1: Substitutes the parametric form of the line perpendicular to the plane passing through (2, 4, -6) into the equation of the plane to find *t*
- M1: Find the reflection of (2, 4, -6) in the plane
- A1: Correct coordinates
- M1: Determines the direction of *l* by subtracting the appropriate vectors
- A1: Correct vector equation using the correct notation

Question	Scheme	Marks	AOs
9(a)(i)	Weight = mass × g \Rightarrow $m = \frac{30000}{g} = 3000$ But mass is in thousands of kg, so $m = 3$	M1	3.3
(ii)	$\frac{dx}{dt} = 40\cos t + 20\sin t, \ \frac{d^2x}{dt^2} = -40\sin t + 20\cos t$	M1	1.1b
	$3(-40\sin t + 20\cos t) + 4(40\cos t + 20\sin t) + 40\sin t - 20\cos t =$	M1	1.1b
	$= 200 \cos t \text{ so PI is } x = 40 \sin t - 20 \cos t$	A1*	2.1
	or		
	Let $x = a\cos t + b\sin t$ $\frac{dx}{dt} = -a\sin t + b\cos t, \ \frac{d^2x}{dt^2} = -a\cos t - b\sin t$	M1	1.1b
	$4b - 2a = 200, -2b - 4a = 0 \Longrightarrow a = \dots, b = \dots$	M1	2.1
	$x = 40\sin t - 20\cos t$	A1*	1.1b
(iii)	$3\lambda^2 + 4\lambda + 1 = 0 \Longrightarrow \lambda = -1, -\frac{1}{3}$	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t}$	A1	1.1b
	x = PI + CF	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
		(8)	
(b)	$t = 0, x = 0 \Longrightarrow A + B = 20$	M1	3.4
	$x = 0, \frac{dx}{dt} = -Ae^{-t} - \frac{1}{3}Be^{-\frac{1}{3}t} + 40\cos t + 20\sin t = 0$ $\implies A + \frac{1}{3}B = 40$	M1	3.4
	$x = 50e^{-t} - 30e^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
	$t = 9 \Rightarrow x = 33 \mathrm{m}$	A1	3.4
		(4)	
Notoci		(12 n	narks)
(a)(i)			
M1: Cor	rect explanation that in the model, $m = 3$		
(ii) M1: Diff M1: Sub A1*: Rea	Terentiates the given PI twice stitutes into the given differential equation ches 200cost and makes a conclusion		

or	
M1: M1: A1*:	Uses the correct form for the PI and differentiates twice Substitutes into the given differential equation and attempts to solve Correct PI
(iii) M1: A1: M1: A1:	Uses the model to form and solve the auxiliary equation Correct complementary function Uses the correct notation for the general solution by combining PI and CF Correct General Solution for the model
(b) M1: M1: A1: A1:	Uses the initial conditions of the model, $t = 0$ at $x = 0$, to form an equation in A and B Uses $\frac{dx}{dt} = 0$ at $x = 0$ in the model to form an equation in A and B Correct PS Obtains 33m using the assumptions made in the model