Linear Transformations in 3D

For a transformation in three dimensions, represented by a 3×3 matrix, the columns of the matrix represent the images of the point $(1,0,0),(0,1,0)$ and $(0,0,1)$ respectively.

In most of the simple transformations in three dimensions that you will meet, you will see that at least one of the points $(1,0,0),(0,1,0)$ and $(0,0,1)$ maps to itself. One way to identify the transformation is to ignore the row and column for this point, and look at the remaining 2×2 matrix. Identify the transformation, and then express it in terms of a three dimensional transformation.

The list below explains how to recognise each of the different types of threedimensional transformation that you might meet.

Reflections

Rotations

Rotate by angle $\boldsymbol{\theta}$ about the y-axis.

Test Your Understanding

$$
\mathbf{M}=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

(a) Describe the transformation represented by \mathbf{M}.
(b) Find the image of the point with coordinates ($-1,-2,1$) under the transformation represented by \mathbf{M}.

