7D Multiple Transformations

1. The points $A(1,0), B(0,1)$ and $C(2,0)$ are the vertices of a triangle T. The triangle T is rotated 90° anticlockwise around $(0,0)$ and then the image T^{\prime} is reflected in the line $y=x$ to obtain the triangle $\mathrm{T}^{\prime \prime}$.
a) On separate diagrams, draw T, T^{\prime} and $T^{\prime \prime}$
b) i) Find the matrix \mathbf{P} such that $\mathbf{P}(\mathrm{T})=\mathrm{T}^{\prime}$
ii) Find the matrix \mathbf{Q} such that $\mathbf{Q}\left(T^{\prime}\right)=T^{\prime \prime}$
c) By finding a matrix product, find the single matrix that will perform a 90° anticlockwise rotation followed by a reflection in $y=x$
2. The following matrices represent three different transformations:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \quad \boldsymbol{Q}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad \boldsymbol{R}=\left[\begin{array}{cc}
3 & 7 \\
-1 & -2
\end{array}\right]
$$

Find the matrix representing the transformation represented by \mathbf{R}, followed by \mathbf{Q}, followed by \mathbf{P} and give a geometrical interpretation of this transformation.
3. $\boldsymbol{M}=\left[\begin{array}{cc}-2 \sqrt{2} & -2 \sqrt{2} \\ 2 \sqrt{2} & -2 \sqrt{2}\end{array}\right]$

The matrix \boldsymbol{M} represents an enlargement with scale factor k followed by an anticlockwise rotation through angle θ about the origin.
a) Find the value of k
b) Find the value of θ

