Determining a matrix for a transformation

Rotations

Reflections

Reflection in the x-axis leaves the point $(1,0)$ unchanged but maps the point $(0,1)$ to the point ($0,-1$).
So the matrix representing this transformation is \square
Reflection in the y-axis maps the point $(1,0)$ to the point $(-1,0)$ but leaves the point $(0,1)$ unchanged.

So the matrix representing this transformation is \square
Reflection in the line $y=x$ maps the point $(1,0)$ to the point $(0,1)$ and maps the point $(0,1)$ to the point $(1,0)$.
So the matrix representing this transformation is \square
Reflection in the line $y=-x$ maps the point $(1,0)$ to the point $(0,-1)$ and maps the point $(0,1)$ to the point $(-1,0)$.
So the matrix representing this transformation is

[^0]
Test Your Understanding

1. Find the matrix representing a reflection in the line $y=x$.
2. Find the matrix representing a rotation by 270°.
3.

$$
\mathbf{C}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

(a) Describe fully the transformations described by matrix \mathbf{C}.

Reflection in $y=x$

Rotation

Finding Invariant Points

Finding Invariant Lines

\square

Example

Find the line of invariant points and invariant lines of the matrix $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)$.

Activity

If possible, fill in either a matrix or a type of transformation (such as reflection or enlargement) that satisfies the conditions for each cell in the grid. If any are not possible, explain why.

		Invariant points	
	Only the origin	Line of invariant points	
Invariant lines	none number		
	infinite number		

[^0]: Warning!! Often mistaken for a rotation!

