7A Introduction to Linear Transformations with Matrices

1. The three transformations \mathbf{S}, \mathbf{T} and \mathbf{U} are defined below. Find the image of the point $(2,3)$ under each of these transformations. State whether each is a linear transformation.
$\boldsymbol{S}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}x+4 \\ y-1\end{array}\right]$
$\boldsymbol{T}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}2 x-y \\ x+y\end{array}\right]$
$\boldsymbol{U}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}2 y \\ -x^{2}\end{array}\right]$

Matrices can be used to represent linear transformations:
2. Find matrices to represent these linear transformations:

$$
\boldsymbol{T}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{c}
2 y+x \\
3 x
\end{array}\right]
$$

$$
\boldsymbol{V}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{c}
-2 y \\
3 x+y
\end{array}\right]
$$

3. The square S has coordinates $(1,1),(3,1),(3,3)$ and $(1,3)$.

Find the coordinates of the vertices of the image of S after the transformation given by the matrix:

$$
\boldsymbol{M}=\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]
$$

