CP1 Chapter 7 Linear Transformations

Chapter Overview

1. Use matrices to represent linear transformations

2. Use matrices to represent reflections, rotations (about the origin).

- 3. Invariant Lines and Points
- 4. Use matrices to represent enlargements.

5. Carry out successive transformations using matrix products.

6. Use inverse matrices to represent reverse transformations.

3.3 Use matrices to represent linear transformations in 2-D. Successive transformations. Single transformations in 3-D.	For 2-D, identification and use of the matrix representation of single and combined transformations from: reflection in coordinate axes and lines $y = \pm x$, rotation through any angle about $(0, 0)$, stretches parallel to the <i>x</i> -axis and <i>y</i> -axis, and enlargement about centre $(0, 0)$, with scale factor <i>k</i> , $(k \neq 0)$, where $k \in \mathbb{R}$. Knowledge that the transformation represented by AB is the transformation represented by B followed by the transformation represented by B followed by the transformation represented by G or rotation about one of $x = 0, y = 0, z = 0$ or rotation about one of the coordinate axes. Knowledge of 3-D vectors is assumed.
3.4 Find invariant	For a given transformation, students
points and lines	should be able to find the coordinates of
for a linear	invariant points and the equations of
transformation.	invariant lines.

Linear Transformations

We can use matrices to describe linear transformations. A linear transformation moves all points (x, y) in a plane according to some rule.

Transforming a point $\begin{pmatrix} x \\ y \end{pmatrix}$ simply involves multiplying it by some matrix.

From above we can see that multiplying by a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ represents the mapping $T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$. Example

1. Express the linear transformation $T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 4x + y \\ x - 2y \end{pmatrix}$ as a matrix.

2. Find matrices to represent these linear transformations.

a)
$$T: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} 2y+x \\ 3x \end{pmatrix}$$

b)
$$V: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} -2y \\ 3x + y \end{pmatrix}$$

3. A square has coordinates (1,1), (3,1), (3,3) and (1,3). Find the vertices of the image of *S* under the transformation given by the matrix $M = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$. Sketch *S* and the image of *S* on a coordinate grid.

Ex 7a page 129