7A Introduction to Linear Transformations with Matrices

1. The three transformations \mathbf{S}, \mathbf{T} and \mathbf{U} are defined below. Find the image of the point $(2,3)$ under each of these transformations. State whether each is a linear transformation.
$\boldsymbol{S}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}x+4 \\ y-1\end{array}\right]$
$\boldsymbol{T}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}2 x-y \\ x+y\end{array}\right]$
$\boldsymbol{U}:\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}2 y \\ -x^{2}\end{array}\right]$

Matrices can be used to represent linear transformations:
2. Find matrices to represent these linear transformations:

$$
\boldsymbol{T}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{c}
2 y+x \\
3 x
\end{array}\right]
$$

$$
\boldsymbol{V}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{c}
-2 y \\
3 x+y
\end{array}\right]
$$

3. The square S has coordinates $(1,1),(3,1),(3,3)$ and $(1,3)$.

Find the coordinates of the vertices of the image of S after the transformation given by the matrix:

$$
\boldsymbol{M}=\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]
$$

7B Reflections \& Rotations

1. Describe fully the geometrical transformation represented by the matrix:
a)

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

b)

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

c)

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

2. Find a matrix to represent the transformation:
a) 'Reflection in the y-axis'
b) 'Enlargement, centre $(0,0)$, scale factor 2 '
c) 'Rotation of 45° anticlockwise about (0,0$)^{\prime}$

As a general rule, the matrix representing a rotation of angle θ anticlockwise about the origin is:

Final notes:
Invariant point

Invariant Lines

7E 3D Transformations

1. A transformation U, in three dimensions, represents a reflection in the plane $z=0$.
a) Write down the 3×3 matrix that represents this transformation.
b) Find the image of the point $(-1,2,3)$ under this transformation

Reflection in the $y z$ plane $(x=0)$

Reflection in the $x z$ plane $(y=0)$

Reflection in the $x y$ plane $(z=0)$
2. A transformation U, in three dimensions, represents a 90° anticlockwise rotation around the x-axis
a) Write down the 3×3 matrix that represents this transformation.
b) Find the image of the point $(-1,2,3)$ under this transformation

Rotation anticlockwise θ around the x -axis

Rotation anticlockwise θ around the y-axis

Rotation anticlockwise θ around the z-axis
3. The matrix $\boldsymbol{M}=\left[\begin{array}{ccc}\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}\end{array}\right]$.
a) Describe the transformation represented by \boldsymbol{M}.
b) Find the image of the point with coordinates $(-1,-2,1)$ under the transformation represented by \boldsymbol{M}.

7C Enlargements

1. The matrix $\boldsymbol{M}=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$.
a) Find the image T^{\prime} of the triangle T with vertices $(1,1),(1,2)$ and $(2,2)$ under the transformation represented by \boldsymbol{M}.
b) Sketch T and T^{\prime} on the same set of coordinate axes.

c) Describe geometrically the transformation represented by \boldsymbol{M}.
2. The Matrix $\boldsymbol{M}=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$.
a) Describe fully the transformation represented by matrix \boldsymbol{M}
b) A triangle T has vertices at $(1,0),(4,0)$ and $(4,2)$. Find the area of the triangle
c) Triangle T is transformed by using matrix \boldsymbol{M}. Find the area of the image of T.

7D Multiple Transformations

1. The points $A(1,0), B(0,1)$ and $C(2,0)$ are the vertices of a triangle T. The triangle T is rotated 90° anticlockwise around $(0,0)$ and then the image T^{\prime} is reflected in the line $y=x$ to obtain the triangle $\mathrm{T}^{\prime \prime}$.
a) On separate diagrams, draw T, T^{\prime} and $T^{\prime \prime}$
b) i) Find the matrix \mathbf{P} such that $\mathbf{P}(\mathrm{T})=\mathrm{T}^{\prime}$
ii) Find the matrix \mathbf{Q} such that $\mathbf{Q}\left(T^{\prime}\right)=T^{\prime \prime}$
c) By finding a matrix product, find the single matrix that will perform a 90° anticlockwise rotation followed by a reflection in $y=x$
2. The following matrices represent three different transformations:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \quad \boldsymbol{Q}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \quad \boldsymbol{R}=\left[\begin{array}{cc}
3 & 7 \\
-1 & -2
\end{array}\right]
$$

Find the matrix representing the transformation represented by \mathbf{R}, followed by \mathbf{Q}, followed by \mathbf{P} and give a geometrical interpretation of this transformation.
3. $\boldsymbol{M}=\left[\begin{array}{cc}-2 \sqrt{2} & -2 \sqrt{2} \\ 2 \sqrt{2} & -2 \sqrt{2}\end{array}\right]$

The matrix \boldsymbol{M} represents an enlargement with scale factor k followed by an anticlockwise rotation through angle θ about the origin.
a) Find the value of k
b) Find the value of θ

7F Inverse Matrices \& Transformations

1. The triangle T has vertices at A, B and C. The matrix:

$$
\boldsymbol{M}=\left[\begin{array}{cc}
4 & -1 \\
3 & 1
\end{array}\right]
$$

transforms T to the triangle T^{\prime} with vertices at $(4,3),(4,10)$ and $(-4,-3)$.
Find the coordinates of the points A, B and C
2. The matrix $\boldsymbol{A}=\left[\begin{array}{cc}2 & 4 \\ -2 & -5\end{array}\right]$ represents a transformation T. Given that T maps point P with coordinates (x, y) onto the point P^{\prime} with coordinates $(6,10)$:
a) Find the coordinates of P

The matrix \boldsymbol{B} represents a transformation U. Given that the transformation T followed by the transformation U is equivalent to a reflection in the line $y=x$:
b) Find matrix \boldsymbol{B}.

