Augstigeworkshap

Hypothesis Tests	Binomial Distribution	Normal Distribution	Correlation Coefficient
Notes	Assume probability is as it says in initial problem (H_0) and investigate how likely a set of results is. If is sufficiently unlikely, reject H_0 and accept H_1 .	Assume mean takes value in original statement and investigate the likelihood of new mean happening (or more extreme result) usually with results from a sample – remember to divide variance by n or standard deviation by \sqrt{n} . If sufficiently unlikely, reject H ₀ and accept H ₁ .	Assume there is no correlation (H ₀) and find PMCC for data given. Use the statement to determine H ₁ . Use table to decide how strong the correlation needs to be for there to be enough evidence to reject H ₀ .
H ₀	P = p Probability is what it says in initial set-up	$\mu = a$ Probability is what it says in initial set- up	ho=0 PMCC = 0 (no correlation)
H ₁	P > p P < p P ≠ p Probability is greater than/ less than/ different to initially stated.	$\mu > a$ $\mu < a$ $\mu \neq a$ Mean is greater than/ less than/ different to initially stated.	$\begin{array}{l} \rho > 0 \\ \rho < 0 \\ \rho \neq 0 \end{array}$ $PMCC \ is \ greater \ than/ \ less \ than/ \ not \ equal \ to \ 0. \ (Correlation \ is \ positive/ \ negative/ \ there \ is \ some \ sort \ of \ correlation \ which \ can \ come \ from \ belief \ of \ no \ correlation) \end{array}$
Conclusion	 Refer to probability found in relation to level of significance for test (remember to divide by two if two-tailed) There is/ is not enough evidence to support H₀, therefore we accept/reject H₀ and reject/ accept H₁, concluding 'context' 	 Refer to probability found in relation to level of significance for test (remember to divide by two if two-tailed) There is/ is not enough evidence to support H₀, therefore we accept/reject H₀ and reject/ accept H₁, concluding 'context' 	 Refer to value in table using >, < sign and if higher/ lower value conclude: There is enough/ insufficient evidence to suggest there is correlation present, therefore we reject/ accept H₀ and accept/ reject H₁, concluding 'context' (ie as x varies, y does/ does not varies – but in more context)