QQQ - PureYr1 - Chapter 9 - Trigonometric Ratios (v4)

Total Marks: 17

(17 = Platinum, 15 = Gold, 13 = Silver, 11 = Bronze)

1.

Figure 1

Figure 1 shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 015°.

(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

(3)

The bearing of yacht C from yacht B is θ° , as shown in Figure 1.

(b) Calculate the value of θ .

(4)

2.

The diagram shows $\triangle ABC$ with AC = 8x - 3, BC = 4x - 1, $\angle ABC = 120^{\circ}$ and $\angle ACB = 15^{\circ}$.

(a) Show that the exact value of x is $\frac{9+\sqrt{6}}{20}$

(7)

(b) Find the area of $\triangle ABC$, giving your answer to 2 decimal places.

(3)

(Total 10 marks)

(a)
$$BC^2 = 700^2 + 500^2 - 2 \times 500 \times 700 \cos 15^\circ$$

 $(= 63851.92...)$
 $BC = 253$ awrt

$$BC^2 = 700^2 + 500^2 - 2 \times 500 \times 700 \cos 15^\circ$$

 $(= 63851.92...)$
 $BC = 253$ awrt

M1 A1

A1 (3)

(b)
$$\frac{\sin B}{700} = \frac{\sin 15}{\text{candidate's }BC}$$
 M1
 $\sin B = \sin 15 \times 700 / 253_c = 0.716...$ and giving an **obtuse** $B = (134.2^\circ)$ dep on 1st M M1
 $\theta = 180^\circ$ - candidate's angle $B = (\text{Dep. on first M only, B can be acute})$ M1
 $\theta = 180 - 134.2 = (0)45.8 = (\text{allow } 46 \text{ or awrt } 45.7, 45.8, 45.9)$ A1 (4) [7]
[46 needs to be from correct working]

$\angle A = 45^{\circ}$ seen or implied in later working.	B1
Makes an attempt to use the sine rule, for example, writing $\frac{\sin 120^{\circ}}{8x - 3} = \frac{\sin 45^{\circ}}{4x - 1}$	M1
States or implies that $\sin 120^\circ = \frac{\sqrt{3}}{2}$ and $\sin 45^\circ = \frac{\sqrt{2}}{2}$	A1
NOTE: Award ft marks for correct work following incorrect values for $\sin 120^\circ$ and $\sin 45^\circ$	
Makes an attempt to solve the equation for x . Possible steps could include:	M1ft
$\frac{\sqrt{3}}{16x-6} = \frac{\sqrt{2}}{8x-2} \text{ or } \frac{\sqrt{6}}{16x-6} = \frac{1}{4x-1} \text{ or } \frac{3}{16x-6} = \frac{\sqrt{6}}{8x-2}$	
$(8\sqrt{3})x - 2\sqrt{3} = (16\sqrt{2})x - 6\sqrt{2}$ or $(4\sqrt{6})x - \sqrt{6} = 16x - 6$ or $24x - 6 = (16\sqrt{6})x - 6\sqrt{6}$	
$6\sqrt{2} - 2\sqrt{3} = x(16\sqrt{2} - 8\sqrt{3})$ or $(4\sqrt{6})x - \sqrt{6} = 16x - 6$ or $12x - 3 = (8\sqrt{6})x - 3\sqrt{6}$	
$x = \frac{6\sqrt{2} - 2\sqrt{3}}{16\sqrt{2} - 8\sqrt{3}}$ or $x = \frac{6 - \sqrt{6}}{16 - 4\sqrt{6}}$ or $x = \frac{3\sqrt{6} - 3}{8\sqrt{6} - 12}$ o.e.	A1ft
Makes an attempt to rationalise the denominator by multiplying top and bottom by the conjugate. Possible steps could include:	M1ft
$x = \frac{\left(3\sqrt{2} - \sqrt{3}\right)}{\left(8\sqrt{2} - 4\sqrt{3}\right)} \times \frac{\left(8\sqrt{2} + 4\sqrt{3}\right)}{\left(8\sqrt{2} + 4\sqrt{3}\right)} \qquad \qquad x = \frac{48 + 12\sqrt{6} - 8\sqrt{6} - 12}{128 - 48} \qquad \qquad x = \frac{36 + 4\sqrt{6}}{80}$	
States the fully correct simplified version for x. $x = \frac{9 + \sqrt{6}}{20} *$	A1*
NOTE: Award ft marks for correct work following incorrect values for sin 120° and sin 45°	(7 marks

10	States or implies that the formula for the area of a triangle is $\frac{1}{2}ab\sin C$ or $\frac{1}{2}ac\sin B$ or $\frac{1}{2}bc\sin A$	M1
	$\frac{1}{2} \left(4 \left(\frac{9 + \sqrt{6}}{20} \right) - 1 \right) \left(8 \left(\frac{9 + \sqrt{6}}{20} \right) - 3 \right) (\sin 15 \text{ or } awrt 0.259)$	M1
	or $\frac{1}{2}(awrt1.29)(awrt1.58)(\sin 15 \text{ or } awrt0.259)$.	
	Finds the correct answer to 2 decimal places. 0.26	A1
	NOTE: Exact value of area is $\frac{1}{200} (24 + 11\sqrt{6})(\sqrt{6} - \sqrt{2})$. If 0.26 not given, award M1M1A0 if exact value seen.	(3 marks) Total 10 marks