1.

Figure 1

Figure 1 shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 015°.
(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht C from yacht B is θ°, as shown in Figure 1.
(b) Calculate the value of θ.
2.

The diagram shows $\triangle A B C$ with $A C=8 x-3, B C=4 x-1, \angle A B C=120^{\circ}$ and $\angle A C B=15^{\circ}$.

(a) Show that the exact value of x is $\frac{9+\sqrt{6}}{20}$.
(b) Find the area of $\triangle A B C$, giving your answer to 2 decimal places.
6.
$B C^{2}=700^{2}+500^{2}-2 \times 500 \times 700 \cos 15^{\circ}$
$\sin B=\sin 15 \times 700 / 253_{\mathrm{c}}=0.716 \ldots$ and giving an obtuse $B \quad\left(134.2^{\circ}\right)$ dep on $1^{\text {st }} \mathrm{M} / \mathrm{M}$
$\theta=180^{\circ}$ - candidate's angle $B \quad$ (Dep. on first M only, B can be acute) $\theta=180-134.2=(0) 45.8 \quad$ (allow 46 or awrt 45.7, 45.8, 45.9)
[46 needs to be from correct working]

$\perp \quad \angle A=45^{\circ}$ seen or implied in later working.	B1
Makes an attempt to use the sine rule, for example, writing $\frac{\sin 120^{\circ}}{8 x-3}=\frac{\sin 45^{\circ}}{4 x-1}$	M1
States or implies that $\sin 120^{\circ}=\frac{\sqrt{3}}{2}$ and $\sin 45^{\circ}=\frac{\sqrt{2}}{2}$ NOTE: Award ft marks for correct work following incorrect values for $\sin 120^{\circ}$ and $\sin 45^{\circ}$	A1
Makes an attempt to solve the equation for x. Possible steps could include: $\begin{aligned} & \frac{\sqrt{3}}{16 x-6}=\frac{\sqrt{2}}{8 x-2} \text { or } \frac{\sqrt{6}}{16 x-6}=\frac{1}{4 x-1} \text { or } \frac{3}{16 x-6}=\frac{\sqrt{6}}{8 x-2} \\ & (8 \sqrt{3}) x-2 \sqrt{3}=(16 \sqrt{2}) x-6 \sqrt{2} \text { or }(4 \sqrt{6}) x-\sqrt{6}=16 x-6 \text { or } 24 x-6=(16 \sqrt{6}) x-6 \sqrt{6} \\ & 6 \sqrt{2}-2 \sqrt{3}=x(16 \sqrt{2}-8 \sqrt{3}) \text { or }(4 \sqrt{6}) x-\sqrt{6}=16 x-6 \text { or } 12 x-3=(8 \sqrt{6}) x-3 \sqrt{6} \end{aligned}$	M1ft
$x=\frac{6 \sqrt{2}-2 \sqrt{3}}{16 \sqrt{2}-8 \sqrt{3}} \quad \text { or } \quad x=\frac{6-\sqrt{6}}{16-4 \sqrt{6}} \quad \text { or } \quad x=\frac{3 \sqrt{6}-3}{8 \sqrt{6}-12} \text { o.e. }$	A1ft
Makes an attempt to rationalise the denominator by multiplying top and bottom by the conjugate. Possible steps could include: $x=\frac{(3 \sqrt{2}-\sqrt{3})}{(8 \sqrt{2}-4 \sqrt{3})} \times \frac{(8 \sqrt{2}+4 \sqrt{3})}{(8 \sqrt{2}+4 \sqrt{3})} \quad x=\frac{48+12 \sqrt{6}-8 \sqrt{6}-12}{128-48} \quad x=\frac{36+4 \sqrt{6}}{80}$	M1ft
States the fully correct simplifed version for x. $x=\frac{9+\sqrt{6}}{20} *$	A1*
NOTE: Award ft marks for correct work following incorrect values for $\sin 120^{\circ}$ and $\sin 45^{\circ}$	(7 marks)

10b	States or implies that the formula for the area of a triangle is $\frac{1}{2} a b \sin C$ or $\frac{1}{2} a c \sin B$ or $\frac{1}{2} b c \sin A$	M1
$\frac{1}{2}\left(4\left(\frac{9+\sqrt{6}}{20}\right)-1\right)\left(8\left(\frac{9+\sqrt{6}}{20}\right)-3\right)(\sin 15$ or $a w r t 0.259)$	M1	
or $\frac{1}{2}($ awrt1.29 $)($ awrt 1.58$)(\sin 15$ or awrt 0.259$)$.	A1	
Finds the correct answer to 2 decimal places. 0.26	(3 marks) Total $\mathbf{1 0}$ marks	
NOTE: Exact value of area is $\frac{1}{200}(24+11 \sqrt{6})(\sqrt{6}-\sqrt{2})$.	Min exact value seen.	

