2.

The diagram above shows a sketch of the curve C with parametric equations

$$
x=5 t^{2}-4, \quad y=t\left(9-t^{2}\right)
$$

The curve C cuts the x-axis at the points A and B.
(a) Find the x-coordinate at the point A and the x-coordinate at the point B.

The region R, as shown shaded in the diagram above, is enclosed by the loop of the curve.
(b) Use integration to find the area of R.

This region is rotated through 2π radians about the x-axis.
(b) Find the volume of the solid generated.

6.

The curve shown in the figure above has parametric equations

$$
x=a \cos 3 t, y=a \sin t, \quad 0 \leq t \leq \frac{\pi}{6}
$$

The curve meets the axes at points A and B as shown.
The straight line shown is part of the tangent to the curve at the point A.
Find, in terms of a,
(a) an equation of the tangent at A,
(b) an exact value for the area of the finite region between the curve, the tangent at A and the x-axis, shown shaded in the figure above.
7.

The curve shown in the figure above has parametric equations

$$
x=t-2 \sin t, \quad y=1-2 \cos t, \quad 0 \leq t \leq 2 \pi
$$

(a) Show that the curve crosses the x-axis where $t=\frac{\pi}{3}$ and $t=\frac{5 \pi}{3}$.

The finite region R is enclosed by the curve and the x-axis, as shown shaded in the figure above.
(b) Show that the area of R is given by the integral

$$
\int_{\frac{\pi}{3}}^{\frac{5 \pi}{3}}(1-2 \cos t)^{2} \mathrm{~d} t
$$

(c) Use this integral to find the exact value of the shaded area.
9.

The diagram shows a sketch of part of the curve C with parametric equations

$$
x=t^{2}+1, \quad y=3(1+t)
$$

The normal to C at the point $P(5,9)$ cuts the x-axis at the point Q, as shown in the diagram.
(a) Find the x-coordinate of Q.
(b) Find the area of the finite region R bounded by C, the line $P Q$ and the x-axis.
10.

The diagram above shows a sketch of the curve C with parametric equations

$$
x=3 t \sin t, y=2 \sec t, \quad 0 \leq t<\frac{\pi}{2}
$$

The point $P(a, 4)$ lies on C.
(a) Find the exact value of a.

The region R is enclosed by C, the axes and the line $x=a$ as shown in the diagram above.
(b) Show that the area of R is given by

$$
\begin{equation*}
6 \int_{0}^{\frac{\pi}{3}}(\tan t+t) \mathrm{d} t \tag{4}
\end{equation*}
$$

(c) Find the exact value of the area of R.
11.

The diagram above shows a cross-section R of a dam. The line $A C$ is the vertical face of the dam, $A B$ is the horizontal base and the curve $B C$ is the profile. Taking x and y to be the horizontal and vertical axes, then A, B and C have coordinates $(0,0),\left(3 \pi^{2}, 0\right)$ and $(0,30)$ respectively. The area of the cross-section is to be calculated.

Initially the profile $B C$ is approximated by a straight line.
(a) Find an estimate for the area of the cross-section R using this approximation.

The profile $B C$ is actually described by the parametric equations.

$$
x=16 t^{2}-\pi^{2}, \quad y=30 \sin 2 t, \quad \frac{\pi}{4} \leq t \leq \frac{\pi}{2}
$$

(b) Find the exact area of the cross-section R.
(c) Calculate the percentage error in the estimate of the area of the cross-section R that you found in part (a).

1. (a) 1.386, 2.291
(b) $A \approx \frac{1}{2} \times 0.5(\ldots)$
$=\ldots(0+2(0.608+1.386+2.291+3.296$ $+4.385)+5.545)$
$=0.25(0+2(0.608+1.386+2.291+3.296$ $+4.385)+5.545)$
ft their (a)
A1ft
$=0.25 \times 29.477 \ldots \approx 7.37$
cao
A1 4
(c) (i) $\int x \ln x \mathrm{~d} x=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \times \frac{1}{x} \mathrm{~d} x$

$$
\begin{aligned}
& =\frac{x^{2}}{2} \ln x-\int \frac{x}{2} \mathrm{~d} x \\
& =\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}(+C)
\end{aligned}
$$

(ii) $\left[\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\right]_{1}^{4}=(8 \ln 4-4)-\left(-\frac{1}{4}\right)$

$$
\begin{aligned}
& =8 \ln 4-\frac{15}{4} \\
& =8(2 \ln 2)-\frac{15}{4} \quad \ln 4=2 \ln 2 \text { seen or }
\end{aligned}
$$

$$
\text { implied } \quad \text { M1 }
$$

$$
=\frac{1}{4}(64 \ln 2-15) \quad a=64, b=-15 \quad \text { A1 } \quad 7
$$

2. (a) $y=0 \Rightarrow t\left(9-t^{2}\right)=t(3-t)(3+t)=0$
$t=0,3,-3$
At $t=0, x=5(0)^{2}-4=-4$

At $t=3, x=5(3)^{2}-4=41$
$\left(\right.$ At $\left.t=-3, x=5(-3)^{2}-4=41\right)$
At $A, x=-4$; at $B, x=41$

Any one correct value
B1
Method for finding one value of $x \quad$ M1
(b)

$$
\begin{array}{rlr}
\frac{\mathrm{d} x}{\mathrm{~d} t}=10 t & \text { Seen or implied } & \text { B1 } \\
\begin{array}{rlr}
\int y \mathrm{~d} x & =\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{dt}=\int t\left(9-t^{2}\right) 10 t \mathrm{dt} & \text { M1 A1 } \\
& =\int\left(90 t^{2}-10 t^{2}\right) \mathrm{dt} & \\
{\left[\frac{90 t^{3}}{3}-\frac{10 t^{5}}{5}\right]_{0}^{3}=30 \times 3^{3}-2 \times 3^{5}(=324)} & \text { M1 } \\
A & \left.=2 \int y \mathrm{~d} x=648 \text { (units }{ }^{2}\right) & \text { A1 }
\end{array} \text { (} \begin{aligned}
6
\end{aligned}
\end{array}
$$

3. (a) 1.14805

B1 1
(b) $A \approx \frac{1}{2} \times \frac{3 \pi}{8}(\ldots)$

B1

$$
\begin{array}{lrr}
=\ldots(3+2(2.77164+2.12132+1.14805)+0) & 0 \text { can be implied } & \text { M1 } \\
=\frac{3 \pi}{16}(3+2(2.77164+2.12132+1.14805)) & \text { ft their (a) } & \text { A1ft } \\
\frac{3 \pi}{16} \times 15.08202 \ldots=8.884 & \text { cao } & \text { A1 }
\end{array}
$$

(c)

$$
\begin{aligned}
& \int 3 \cos \left(\frac{x}{3}\right) \mathrm{d} x=\frac{3 \sin \left(\frac{x}{3}\right)}{\frac{1}{3}} \\
&=9 \sin \left(\frac{x}{3}\right) \\
& A=\left[9 \sin \left(\frac{x}{3}\right)\right]_{0}^{\frac{3 \pi}{2}}=9-0=9 \text { M1 A1 } \\
&
\end{aligned}
$$

4. (a) $\quad \operatorname{Area}(R)=\int_{0}^{2} \frac{3}{\sqrt{(1+4 x)}} \mathrm{dx}=\int_{0}^{2} 3(1+4 x)^{-\frac{1}{2}} \mathrm{~d} x$

$$
\text { Integrating } 3(1+4 x)^{-\frac{1}{2}} \text { to give } \pm k(1+4 x)^{\frac{1}{2}} \text {. M1 }
$$

$$
\begin{align*}
& =\left[\frac{3(1+4 x)^{\frac{1}{2}}}{\frac{1}{2} \cdot 4}\right]_{0}^{2} \tag{A1}\\
& \text { Correct integration. Ignore limits. }
\end{align*} \text { A1 } \quad \begin{array}{lr}
=\left[\frac{3}{2}(1+4 x)^{\frac{1}{2}}\right]_{0}^{2} & \\
=\left(\frac{3}{2} \sqrt{9}\right)-\left(\frac{3}{2}(1)\right) & \text { Substitutes limits of } 2 \text { and } 0 \text { into a } \\
\text { changed function and subtracts the correct way round. } & \text { M1 } \\
=\frac{9}{2}-\frac{3}{2}=\underline{3}(\text { units })^{2} & \underline{3} \tag{3}\\
\underline{\text { A } 1}
\end{array}
$$

(Answer of 3 with no working scores M0A0M0A0.)
(b) Volume $=\pi \int_{0}^{2}\left(\frac{3}{\sqrt{(1+4 x)}}\right)^{2} \mathrm{~d} x \quad$ Use of $V=\underline{\pi \int y^{2}} \mathrm{~d} x$.

Can be implied. Ignore limits and $\mathrm{d} x$.

$$
\begin{array}{lr}
=(\pi) \int_{0}^{2} \frac{9}{1+4 x} \mathrm{~d} x & \\
=(\pi)\left[\frac{9}{4} \ln |1+4 x|\right]_{0}^{2} & \pm k \ln |1+4 x| \\
& \frac{9}{4} 1 \mathrm{n}|1+4 x|
\end{array}
$$

$$
\begin{array}{r}
=(\pi)\left[\left(\frac{9}{4} \ln 9\right)-\left(\frac{9}{4} \ln 1\right)\right] \quad \begin{array}{l}
\text { Substitutes limits of } 2 \text { and } 0 \\
\text { and subtracts the correct way round. }
\end{array} \quad \mathrm{dM1}
\end{array}
$$

Note that $\ln 1$ can be implied as equal to 0 .
So Volume $=\frac{9}{\underline{4} \pi 1 \mathrm{n} 9} \quad \underline{\frac{9}{4} \pi 1 \mathrm{n} 9}$ or $\frac{\frac{9}{2} \pi 1 \mathrm{n} 3}{}$ or $\frac{18}{4} \pi 1 \mathrm{n} 3 \mathrm{~A} 1$ oe isw
Note the answer must be a one term exact value. Note that
$\frac{9}{4} \pi \ln 9+c$ (oe.) would be awarded the final A0.
Note, also you can ignore subsequent working here.
5. (a) Area Shaded $=\int_{0}^{2 \pi} 3 \sin \left(\frac{x}{2}\right) \mathrm{d} x$

$$
=\left[\frac{-3 \cos \left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_{0}^{-2 \pi}
$$

Integrating $3 \sin \left(\frac{x}{2}\right)$ to give $k \cos \left(\frac{x}{2}\right)$ with $k \neq 1$.
Ignore limits.
$=\left[-6 \cos \left(\frac{x}{2}\right)\right]_{0}^{2 \pi}$

$$
\begin{array}{cc}
-6 \cos \left(\frac{x}{2}\right) \text { or } \frac{-3}{\frac{1}{2}} \cos \left(\frac{x}{2}\right) & \text { A1 oe } \\
=[-6(-1)]-[-6(1)]=6+6=12 & \text { A1 cao } \\
\text { (Answer of } 12 \text { with no working scores MOAOAO.) } &
\end{array}
$$

(b) Volume $=\pi \int_{0}^{2 \pi}\left(3 \sin \left(\frac{x}{2}\right)\right)^{2} \quad \mathrm{~d} x=9 \pi \int_{0}^{2 \pi} \sin ^{2}\left(\frac{x}{2}\right) \mathrm{d} x$

Use of $V=\pi \int y^{2} \mathrm{~d} x$.
Can be implied. Ignore limits.
[NB: $\cos 2 x= \pm 1 \pm 2 \sin ^{2} x \quad$ gives $\sin ^{2} x \quad x=\frac{1-\cos 2 x}{2}$]
[NB: $\cos x= \pm 1 \pm 2 \sin ^{2}\left(\frac{x}{2}\right) \quad$ gives $\left.\sin ^{2}\left(\frac{x}{2}\right)=\frac{1-\cos x}{2}\right] \quad$ M1
Consideration of the Half Angle Formula for $\sin ^{2}\left(\frac{x}{2}\right)$ or the Double Angle Formula for $\sin ^{2} x$
\therefore Volume $=9(\pi) \int_{0}^{2 \pi}\left(\frac{1-\cos x}{2}\right) \mathrm{d} x$
Correct expression for Volume
Ignore limits and π.
$=\frac{9(\pi)}{2} \int_{0}^{2 \pi} \underline{(1-\cos x)} \mathrm{d} x$
$=\frac{9(\pi)}{2}[x-\sin x]_{0}^{2 \pi}$
Integrating to give $+a x+b s i n x$;
depM1;
Correct integration
$k-k \cos x \rightarrow k x-k \sin x$
$=\frac{9 \pi}{2}[(2 \pi-0)-(0-0)]$
$=\frac{9 \pi}{2}(2 \pi)=\underline{9 \pi^{2}}$ or $\underline{88.8264}$.
Use of limits to give either $9 \pi^{2}$ or awrt 88.8
Solution must be completely correct. No flukes allowed.
6. (a) $\frac{d x}{d t}=-3 a \sin 3 t, \quad \frac{d y}{d t}=a \cos t$ therefore $\frac{d y}{d x}=\frac{\cos t}{-3 \sin 3 t}$

When $x=0, t=\frac{\pi}{6}$
B1

Gradient is $-\frac{\sqrt{3}}{6}$ M1

Line equation is $\left(y-\frac{1}{2} a\right)=-\frac{\sqrt{3}}{6}(x-0)$
M1 A1
(b) Area beneath curve is $\int a \sin t(-3 a \sin 3 t) d t$
$=-\frac{3 a^{2}}{2} \int(\cos 2 t-\cos 4 t) d t$
$\frac{3 a^{2}}{2}\left[\frac{1}{2} \sin 2 t-\frac{1}{4} \sin 4 t\right]$
Uses limits 0 and $\frac{\pi}{6}$ to give $\frac{3 \sqrt{3} a^{2}}{16}$
Area of triangle beneath tangent is $\frac{1}{2} \times \frac{a}{2} \times \sqrt{3} a=\frac{\sqrt{3} a^{2}}{4}$
M1 A1
Thus required area is $\frac{\sqrt{3} a^{2}}{4}-\frac{3 \sqrt{3} a^{2}}{16}=\frac{\sqrt{3} a^{2}}{16}$
A1 9
N.B. The integration of the product of two sines is worth 3 marks (lines 2 and 3 of to part (b))
If they use parts

$$
\begin{aligned}
\int \sin t \sin 3 t d t & =-\cos t \sin 3 t+\int 3 \cos 3 t \cos t d t \\
& =-\cos t \sin 3 t+3 \cos 3 t \sin t+\int 9 \sin 3 t \sin t d t
\end{aligned}
$$

$8 I=\cos t \sin 3 t-3 \cos 3 t \sin t$

7 (a) Solves $\mathrm{y}=0 \Rightarrow$ cost $=\frac{1}{2}$ to obtain $t=\frac{\pi}{3}$ or $\frac{5 \pi}{3}$ (need both for A1)

M1 A1 2

Or substitutes both values of t and shows that $y=0$
(b) $\frac{d x}{d t}=1-2$ cost

$$
\begin{align*}
\text { Area }=\int y d x & =\int_{\pi / 3}^{5 \pi / 3}(1-2 \cos t)(1-2 \cos t) d t \\
& =\int_{\pi / 3}^{5 \pi / 3}(1-2 \cos t)^{2} d t \quad \text { AG } \tag{B1 3}
\end{align*}
$$

$\begin{array}{lll}\text { (c) } & \text { Area }=\int 1-4 \cos t+4 \cos ^{2} t d t & 3 \text { terms } \\ \int 1-4 \cos t+2(\cos 2 t+1) d t & \text { (use of correct double angle formula) } & \text { M1 }\end{array}$
$=\int 3-4 \cos t+2 \cos 2 t d t \quad$ M1 A1
$=[3 t-4 \sin t+\sin 2 t] \quad$ M1 A1
Substitutes the two correct limits $t=\frac{5 \pi}{3}$ and $\frac{\pi}{3}$ and subtracts. M1
$=4 \pi+3 \sqrt{3}$
A1A1 7
[12]
8. (a) $\int x \mathrm{e}^{2 x} \mathrm{~d} x=\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{2} \int \mathrm{e}^{2 x} \mathrm{~d} x$

M1 A1
Attempting parts in the right direction
$=\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{4} \mathrm{e}^{2 x}$
$\left[\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{4} \mathrm{e}^{2 x}\right]_{0}^{1}=\frac{1}{4}+\frac{1}{4} \mathrm{e}^{2}$
M1 A1 5
(b) $x=0.4 \Rightarrow y \approx 0.89022$
$x=0.8 \Rightarrow y \approx 3.96243$
B1 1
Both are required to 5.d.p.
(c) $I \approx \frac{1}{2} \times 0.2 \times[\ldots]$ B1
$\approx \ldots \times[0+7.38906+2(0.29836+.89022+1.99207+3.96243)] \quad$ M1 A1ft ft their answers to (b)
$\approx 0.1 \times 21.67522$
≈ 2.168
cao A1 4
Note: $\frac{1}{4}+\frac{1}{4} e^{2} \approx 2.097 \ldots$
9. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\dot{y}}{\dot{x}}=\frac{3}{2 t}$

Gradient of normal is $-\frac{2 t}{3}$
At $\mathrm{P} t=2$ B1
\therefore Gradient of normal @ P is $-\frac{4}{3}$ A1

Equation of normal @ P is $y-9=-\frac{4}{3}(x-5)$ M1

Q is where $y=0 \therefore x=\frac{27}{4}+5=\frac{47}{\underline{4}}$ (o.e.)
A1 6
(b) Curved area $=\int y \mathrm{~d} x=\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$
$=\int 3(1+b) .2 t \mathrm{~d} t$ A1
$=\left[3 t^{2}+2 t^{3}\right] \quad$ M1A1
Curve cuts x-axis when $t=-1 \quad$ B1
Curved area $=\left[3 t^{2}+2 t^{3}\right]_{-1}^{2}=(12+16)-(3-2)(=27) \quad$ M1
Area of B_{Q} triangle $=\frac{1}{2}((a)-5) \times 9(=30.375)$
M1
Total area of $\mathrm{R}=$ curved area $+\Delta \quad$ M1
$=57.375$ or AWRT 57.4
A1 9
10. (a) $4=2 \sec t \Rightarrow \cos t=\frac{1}{2}, \Rightarrow t=\frac{\pi}{3}$

M1, A1
$\therefore a=3 \times \frac{\pi}{3} \times \sin \frac{\pi}{3}=\frac{\pi \sqrt{3}}{2}$
(b) $\quad A=\int_{0}^{a} y \mathrm{~d} x=\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$

Change of variable
$=\int 2 \sec t \times[3 \sin t+3 t \cos t] \mathrm{d} t$
M1
Attempt $\frac{\mathrm{d} x}{\mathrm{~d} t}$
$=\int_{0}^{\frac{\pi}{3}}(6 \tan t,+6 t) \mathrm{d} t \quad(*)$
A1, A1cso
4

Final A1 requires limit stated
(c) $A=\left[6 \ln \sec t+3 t^{2}\right]_{0}^{\frac{\pi}{3}}$ M1, A1

Some integration (M1) both correct (A1) ignore lim.
$=\left(6 \ln 2+3 \times \frac{\pi^{2}}{9}\right)-(0) \quad$ Use of $\frac{\pi}{3}$ M1
$=\underline{6 \ln 2+} \underline{\frac{\pi^{2}}{3}}$
A1 4
11. (a) Area of triangle $=\frac{1}{2} \times 30 \times 3 \pi^{2}(=444.132)$

B1 1
Accept 440 or 450
(b) Either Area shaded $=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 30 \sin 2 t .32 t \mathrm{~d} t$ M1 A1
$=\left[-480 t \cos 2 t+\int 480 \cos 2 t\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$
M1 A1

$$
\begin{aligned}
& =[-480 t \cos 2 t+240 \sin 2 t]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =240(\pi-1)
\end{aligned}
$$

M1 A1 7

