9A The Cosine Rule

1. A triangle has sides of $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm respectively. Find the size of the smallest angle
2. Coastguard station B is 8 km on a bearing of 060° from coastguard station A. A ship C is 4.8 km , on a bearing of 018°, away from A .
3. In the triangle below, $P Q=x c m, Q R=(x+2) \mathrm{cm}, R P=5 \mathrm{~cm}$ and angle $P Q R=60^{\circ}$. Find the value of x.

9B The Sine Rule

1. Calculate the labelled side in the triangle below:

2. Calculate the labelled angle in the triangle to the right:

9C The Sine Rule (Ambiguous Case)

1. In triangle $A B C, A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and angle $B A C=44^{\circ}$. Work out the possible values of ACB.

9D Trigonometric Area Formula

1. Calculate the area of the triangle shown below

2. The area of the triangle to the right is $60 \mathrm{~cm}^{2}$.

Show that $x^{2}-3 x-240=0$

9E Problem Solving

1. The diagram shows the locations of four mobile phone masts in a field. $B C=75 \mathrm{~m}, C D=$ 80 m , angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$
The masts must be at least 70 m apart so that they do not interfere with each other. Given that A is the minimum distance from D, find the distance $A B$.

9F Trigonometric Graphs

9G Graphical Transformations of Trigonometric Graphs

1. The graph shows the Function:
$f(x)=\operatorname{Sin} \theta+k$

a) Write down the value of k
b) What is the smallest positive value of θ that gives a minimum point?
c) What is the value of $\operatorname{Sin} \theta$ at this point?
2. The graph shows the Function:

$$
f(x)=\operatorname{Cos}(\theta+k)
$$

a) Write down the value of k
b) What is the value of θ at x ?
c) What are the coordinates of the minimum?
d) What is the value of $\cos \theta$ at y ?

