8 E Integrating Vectors

1. A particle P is moving in a plane. At time t seconds, its velocity, $v m s^{-1}$, is given by:

$$
v=3 t i+\frac{1}{2} t^{2} \boldsymbol{j}
$$

When $t=0$, the position vector of P with respect to a fixed origin O is $(2 \boldsymbol{i}-3 \boldsymbol{j}) m$. Find the position vector of P at time t seconds
2. A particle P is moving in a plane so that, at time t seconds, its acceleration is:

$$
\boldsymbol{a}=(4 \boldsymbol{i}-2 t \boldsymbol{j}) m s^{-2}
$$

At $t=3$, the velocity of P is $6 \boldsymbol{i} \mathrm{~ms}^{-1}$ and the position vector of P is $(20 \boldsymbol{i}+3 \boldsymbol{j}) \mathrm{m}$ with respect to a fixed origin O. Find:
a) The angle between the direction of motion of P, and \boldsymbol{i}, when $t=2$
b) The distance of P from O when $t=0$
3. The velocity of a particle at time t seconds is given by:

$$
\boldsymbol{v}=\left(3 t^{2}-8\right) \boldsymbol{i}+5 \boldsymbol{j}
$$

When $t=0$, the position vector of P with respect to a fixed origin is $(2 \boldsymbol{i}-4 \boldsymbol{j}) m$
a) Find the position vector of P after t seconds

A second particle Q moves with constant velocity $(8 \boldsymbol{i}+4 \boldsymbol{j}) m s^{-1}$. When $t=0$, the position vector of Q with respect to the origin O is $2 \boldsymbol{i} m$.
b) Prove that P and Q collide

