$8 C^{n} C_{r}$ with Binomials

Binomial series

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})
$$

$$
\text { where }\binom{n}{r}={ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}
$$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \times 2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{1 \times 2 \times \ldots \times r} x^{r}+\ldots \quad(|x|<1, n \in \mathbb{R})
$$

1. Use the binomial theorem to find the expansion of $(3-2 x)^{5}$
2. Find the first 4 terms in the expansion of $(1+2 x)^{10}$
3. Find the first 4 terms in the expansion of $\left(10-\frac{1}{2} x\right)^{6}$
