8A Introduction \& Pascal's Triangle

1. Find the expansion of $(x+2 y)^{3}$
2. Find the expansion of $(2 x-5)^{4}$
3. The coefficient of x^{2} in the expansion of $(2-c x)^{3}$ is 294 . Find the value of c.

$8 B^{n} C_{r}$

1) Calculate 6!
2) Calculate ${ }^{8} C_{3}$
3) Calculate ${ }^{9} C_{3}$ and ${ }^{9} C_{6}$, and comment on your answers

$8 C^{n} C_{r}$ with Binomials

Binomial series

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})
$$

$$
\text { where }\binom{n}{r}={ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}
$$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \times 2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{1 \times 2 \times \ldots \times r} x^{r}+\ldots \quad(|x|<1, n \in \mathbb{R})
$$

1. Use the binomial theorem to find the expansion of $(3-2 x)^{5}$
2. Find the first 4 terms in the expansion of $(1+2 x)^{10}$
3. Find the first 4 terms in the expansion of $\left(10-\frac{1}{2} x\right)^{6}$

8D Finding Coefficients in Expressions

1. Find the coefficient of x^{4} in $(2+3 x)^{10}$
2. Find the coefficient of x^{3} in $(2+x)(3-2 x)^{7}$
3. If $g(x)=(1+k x)^{10}$, where k is a constant, and the coefficient of x^{3} is 15 , find the value of k.
4.

a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1+q x)^{8}$, where q is a non-zero constant.
b) Given that, in the expansion of $(1+q x)^{8}$, the coefficient of x is $-r$ and the coefficient of x^{2} is $7 r$, find the values of q and r

8E Using the Binomial Expansion for Approximations

$$
(1+x)^{n} \quad(|x|<1, n \in \mathbb{R})
$$

1.

a) Find the first four terms of the binomial expansion of $\left(1-\frac{x}{4}\right)^{10}$, in ascending powers of x
b) Use your expansion to estimate the value of 0.975^{10}, giving your answer to 4 decimal places

