8A Introduction & Pascal's Triangle

1. Find the expansion of $(x + 2y)^3$

2. Find the expansion of $(2x - 5)^4$

3. The coefficient of x^2 in the expansion of $(2 - cx)^3$ is 294. Find the value of c.

<u>8B ⁿC_r</u>

1) Calculate 6!

2) Calculate 8C_3

3) Calculate ${}^{9}C_{3}$ and ${}^{9}C_{6}$, and comment on your answers

8C ⁿC_r with Binomials

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
 $(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$

1. Use the binomial theorem to find the expansion of $(3 - 2x)^5$

2. Find the first 4 terms in the expansion of $(1 + 2x)^{10}$

3. Find the first 4 terms in the expansion of $\left(10 - \frac{1}{2}x\right)^6$

8D Finding Coefficients in Expressions

1. Find the coefficient of x^4 in $(2 + 3x)^{10}$

2. Find the coefficient of x^3 in $(2 + x)(3 - 2x)^7$

3. If $g(x) = (1 + kx)^{10}$, where k is a constant, and the coefficient of x^3 is 15, find the value of k.

4.

a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + qx)^8$, where q is a non-zero constant.

b) Given that, in the expansion of $(1 + qx)^8$, the coefficient of x is – r and the coefficient of x^2 is 7r, find the values of q and r

<u>8E Using the Binomial Expansion for Approximations</u>

$$(1+x)^n \qquad (|x| < 1, n \in \mathbb{R})$$

1. a) Find the first four terms of the binomial expansion of $\left(1-\frac{x}{4}\right)^{10}$, in ascending powers of x

b) Use your expansion to estimate the value of 0.975¹⁰, giving your answer to 4 decimal places