7A Cancelling Algebraic Fractions

1. Simplify the following fractions
a) $\frac{7 x^{4}-2 x^{3}+6 x}{x}$
b) $\frac{(x+7)(2 x-1)}{(2 x-1)}$
c) $\frac{x+3}{x^{2}+7 x+12}$
d) $\frac{x^{2}+6 x+5}{x^{2}+3 x-10}$
e) $\frac{2 x^{2}+11 x+12}{(x+3)(x+4)}$

7B Polynomial Division

1. Divide $x^{3}+2 x^{2}-17 x+6$ by $(x-3)$
2. Given that $f(x)=4 x^{4}-17 x^{2}+4$, write $f(x)$ in the form:

$$
f(x)=(2 x+1)\left(a x^{3}+b x^{2}+c x+d\right)
$$

3. Find the remainder when $2 x^{3}-5 x^{2}-16 x+10$ is divided by $(x-4)$

7C The Factor Theorem

1. Show that $(x-2)$ is a factor of $x^{3}+x^{2}-4 x-4$ by:
a) Algebraic division
b) The factor theorem
2.

a) Fully factorise $2 x^{3}+x^{2}-18 x-9$
b) Hence, sketch the graph of $y=2 x^{3}+x^{2}-18 x-9$

3. Given that $(x+1)$ is a factor of $4 x^{4}-3 x^{2}+a$, find the value of a.

7D Algebraic Proof

1. Prove that:

$$
(3 x+2)(x-5)(x+7) \equiv 3 x^{3}+8 x^{2}-101 x-70
$$

2. Prove that if $(x-p)$ is a factor of $f(x)$ then $f(p)=0$
3. Prove that $A(1,1), B(3,3)$ and $C(4,2)$ are the vertices of a right-angled triangle.
4. The equation $k x^{2}+3 k x+2=0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \leq k<\frac{8}{9}$.

7E Proof by Exhaustion, Counter-Example \& Jottings

1. Prove that all square numbers are either a multiple of 4 , or 1 more than a multiple of 4
2. Prove that the following statement is not true:
"The sum of two consecutive prime numbers is always even"
3. Prove that for all positive values of x and y :

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

