7D Algebraic Proof

1. Prove that:

$$
(3 x+2)(x-5)(x+7) \equiv 3 x^{3}+8 x^{2}-101 x-70
$$

2. Prove that if $(x-p)$ is a factor of $f(x)$ then $f(p)=0$
3. Prove that $A(1,1), B(3,3)$ and $C(4,2)$ are the vertices of a right-angled triangle.
4. The equation $k x^{2}+3 k x+2=0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \leq k<\frac{8}{9}$.

7E Proof by Exhaustion, Counter-Example \& Jottings

1. Prove that all square numbers are either a multiple of 4 , or 1 more than a multiple of 4
2. Prove that the following statement is not true:
"The sum of two consecutive prime numbers is always even"
3. Prove that for all positive values of x and y :

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

