## 6A Mid-Points of Line Segments

1. Find the midpoint of this pair of points:
a) $(2,3)$ and $(6,9)$
b) $(2 a,-4 b)$ and $(7 a, 8 b)$
2. $A B$ is a diameter of a circle, where $A$ and $B$ are the coordinates $(-3,8)$ and $(5,4)$ respectively. Find the coordinates of the centre of the circle.
3. $P Q$ is a diameter of a circle, centre $(2,-2)$. Given that $P$ is $(8,-5)$, find the coordinates of $Q$.

## 6B Perpendicular Bisectors of Line Segments

1. The line $A B$ is the diameter of the circle with centre $C$, where $A$ and $B$ are $(-1,4)$ and $(5,2)$ respectively. The line I passes through $C$ and is perpendicular to $A B$. Find the equation of $I$.
2. The line $P Q$ is the Chord of the circle, centre $(-3,5)$, where $P$ and $Q$ are $(5,4)$ and $(1,12)$ respectively. The line I is perpendicular to $P Q$ and bisects it. Show that it passes through the centre of the circle.
3. The lines $A B$ and $C D$ are chords of a circle. The line $y=3 x-11$ is the perpendicular bisector of $A B$. The line $y=-x-1$ is the perpendicular bisector of $C D$. Find the coordinates of the circle's centre.

## 6C Equations of Circles



1. Write down the equation of the circle with centre $(5,7)$ and radius 4
2. Find the coordinates of the centre, and the radius of, the circle with the following equation:

$$
(x+3)^{2}+(y-1)^{2}=4^{2}
$$

3. Find the coordinates of the centre, and the radius of, the circle with the following equation:

$$
\left(x-\frac{5}{2}\right)^{2}+(y+4)^{2}=32
$$

4. Show that the circle:

$$
(x-3)^{2}+(y+4)^{2}=20
$$

Passes through $(5,-8)$
5. The line $A B$ is the diameter of a circle, where $A$ and $B$ are $(4,7)$ and $(-8,3)$ respectively. Find the equation of the circle.
6. Find the centre and radius of the circle with equation:

$$
x^{2}+y^{2}-14 x+16 y-12=0
$$

## 6D Lines Intersecting Circles

1. Find the coordinates where the line $y=x+5$ meets the circle $x^{2}+(y-2)^{2}=29$.
2. Show that the line $y=x-7$ does not touch the circle $(x+2)^{2}+y^{2}=33$.

## 6E Applying Circle Theorems

1. The line $4 x-3 y-40=0$ is a tangent to the circle $(x-2)^{2}+(y-6)^{2}=100$ at $P=(10,0)$. Show that the radius at $P$ is perpendicular to this line.
2. A circle C has equation:

$$
(x-5)^{2}+(y+3)^{2}=10
$$

The line $l$ is a tangent to the circle and has gradient -3 . Find the two possible equations for $l$, giving your answers in the form $y=m x+c$.

## 6E Applying Circle Theorems

1. The points $A(-8,1), B(4,5)$ and $C(-4,9)$ lie on the circle, as shown in the diagram.
a) Show that $A B$ is a diameter of the circle.
b) Find an equation of the circle
2. The points $P(3,16), Q(11,12)$ and $R(-7,6)$ lie on the circumference of a circle. The equation of the perpendicular bisector of PQ is $y=2 x$.
a) Find the equation of the perpendicular bisector of PR
b) Find the coordinates of the centre of the circle
c) Work out the equation of the circle
