2A/B Solving Quadratic Equations

- 1. Solve the Equation
- a) $x^2 = 9x$

b) $x^2 - 2x - 15 = 0$

c) $2x^2 - 9x - 5 = 0$

d) $6x^2 + 13x - 5 = 0$

e)
$$x^2 - 5x + 18 = 2 + 3x$$

f)
$$(2x-3)^2 = 25$$

g)
$$(x-3)^2 = 7$$

2. Solve $4x^2 - 3x - 2 = 0$ by using the Quadratic formula.

2C/D Completing the Square

- 1. Complete the square for the following expressions a) $x^2 + 8x$

b) $x^2 - 4x$

c) $x^2 - 2x$

d) $x^2 + 16x$

- 2. Solve the following equations. You can use completing the square, but I prefer to stick to the Quadratic formula give both a go and see if you have a preference (and get the same answer)
- a) $x^2 + 4x 3 = 0$

b) $x^2 - 6x + 4 = 0$

c)
$$2x^2 + 12x - 10 = 0$$

d) $ax^2 + bx + c = 0$ (complete the square only – what do you find?)

2E Part 1 Quadratics as a Function

- 1. The function f and g are given by f(x) = 2x 10 and $g(x) = x^2 9$, $x \in \mathbb{R}$.
- a) Find the values of f(5) and g(10)

b) Find the value of *x* for which f(x) = g(x)

- 2. The function f is defined as $f(x) = x^2 + 6x 5$, $x \in \mathbb{R}$. a) Write f(x) in the form $(x + p)^2 + q$

b) Hence, or otherwise, find the roots of f(x), leaving all your answers in surd form

c) Write down the minimum value of f(x) and state the value of x for which it occurs

2E Part 2 Hidden Quadratics

1. Find the roots of the function $f(x) = x^6 + 7x^3 - 8, x \in \mathbb{R}$

2F Sketching Quadratics

1. Sketch the graph of the function $y = x^2 - 5x + 4$, and find the coordinates of its turning point.

2. Sketch the graph of the function $y = 4x - 2x^2 - 3$, and find the coordinates of its turning point.

1. Find the values of k for which;

 $x^2 + kx + 9 = 0$

has equal roots.

2. Find the values of k for which;

$$x^{2} + 4x + k = 0$$

has two distinct real solutions.

2H Modelling with Quadratics

1. A spear is thrown over level ground from the top of a tower. The height, h, in metres, of the spear above the ground after t seconds is modelled by the function:

 $h(t) = 12.25 + 14.7t - 4.9t^2, t \ge 0$

a) Interpret the meaning of the constant 12.25 in the question

b) After how many seconds does the spear hit the ground?

c) Write h(t) in the form $A - B(t - C)^2$, where A, B and C are constants to be found.

d) Using your answer to part c), or otherwise, find out the maximum height of the spear, and when it reaches this height