Chapter Overview

1. Sine/ Cosine Rule
2. Areas of Triangles
3. Trig Graphs
4. Proof of Sine/ Cosine Rule

5	5.1	Understand and use the definitions of sine, cosine and tangent for all arguments;	Use of x and y coordinates of points on the unit circle to give cosine and sine respectively,		
The sine and cosine rules;					
the area of a triangle in the					
form $\frac{1}{2} a b \sin C$				\quad	including the ambiguous case of the
:---					
sine rule.					

5.3 Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity.

Knowledge of graphs of curves with equations such as $y=\sin x$, $y=\cos \left(x+30^{\circ}\right), y=\tan 2 x$ is expected.

The Cosine Rule

You have	You want	Use
\#1: Two angle-side opposite pairs	Missing angle or side in one pair	Sine rule
\#2 Two sides known and a missing side opposite a known angle	Remaining side	Cosine rule
\#3 All three sides	An angle	Cosine rule
\#4 Two sides known and a missing side not opposite known angle	Remaining side	Sine rule twice
Examples:		

1.

2.

3.

4. Coastguard station B is 8 km , on a bearing of 060°, from coastguard station A. A ship C is 4.8 km on a bearing of 018°, away from A. Calculate how far C is from B.

Test Your understanding
1.

2.

3.

The Sine Rule

Examples:
1.

3.

4.

Extension

[MAT 2011 1E]
The circle in the diagram has centre C. Three angles α, β, γ are also indicated.

The angles α, β, γ are related by the equation:
A) $\cos \alpha=\sin (\beta+\gamma)$
B) $\sin \beta=\sin \alpha \sin \gamma$
C) $\sin \beta(1-\cos \alpha)=\sin \gamma$
D) $\sin (\alpha+\beta)=\cos \gamma \sin \alpha$

The Ambiguous Case

Example:
Given that the angle θ is obtuse, determine θ and hence determine the length of x.

Area of Non Right-Angled Triangles

understanding:

1. The area of this triangle is 10 . Determine x.

2. The area of this triangle is also 10 . If θ is obtuse, determine θ.

Problem solving with sin/cos rule

Example

The diagram shows the locations of four mobile phone masts in a field, $B C=75 \mathrm{~m} . C D=$ 80 m , angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.

In order that the masts do not interfere with each other, they must be at least 70m apart. Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.

Using the sine rule twice:
\square your

understanding

1.

2.

Extension

1. [AEA 2009 Q5a] The sides of the triangle $A B C$ have lengths $B C=a, A C=b$ and $A B=c$, where $a<b<c$. The sizes of the angles A, B and C form an arithmetic sequence.
(i) Show that the area of triangle $A B C$ is $a c \frac{\sqrt{3}}{4}$.

Given that $a=2$ and $\sin A=\frac{\sqrt{15}}{5}$, find
(ii) the value of b,
(iii) the value of c.

Trig Graphs

$$
Y=\sin x
$$

$Y=\cos x$

$Y=\tan \mathrm{x}$

Using trig graphs

Suppose we know that $\sin (30)=0.5$. By thinking about symmetry in the graph, how could we work out:
$\operatorname{Sin}(150)$
$\operatorname{Sin}(-30)$
$\operatorname{Sin}(210)$

Suppose we know that $\boldsymbol{\operatorname { c o s } (6 0)} \mathbf{= 0 . 5}$. By thinking about symmetry in the graph, how could we work out:
$\operatorname{Cos}(120)$
$\operatorname{Cos}(-60)$
$\operatorname{Cos}(240)$

Suppose we know that $\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$. By thinking about symmetry in the graph, how could we work out:

Tan(-30)
$\operatorname{Tan}(150)$

Transforming Trig Graphs

We can use our knowledge of transforming graphs to transform trig graphs.

Recap
\square

Examples

1. Sketch $y=4 \sin x, 0 \leq x \leq 360^{\circ}$
2. Sketch $y=\cos \left(x+45^{\circ}\right), 0 \leq x \leq 360^{\circ}$
3. Sketch $y=-\tan x, 0 \leq x \leq 360^{\circ}$
4. Sketch $y=\sin \left(\frac{x}{2}\right), 0 \leq x \leq 360^{\circ}$

Extension

1.

[MAT 2013 1B] The graph of $y=\sin x$ is reflected first in the line $x=\pi$ and then in the line $y=2$. The resulting graph has equation:
A) $y=\cos x$
B) $y=2+\sin x$
C) $y=4+\sin x$
D) $y=2-\cos x$
2.
[MAT 2011 1D] What fraction of the interval $0 \leq x \leq 360^{\circ}$ is one (or both) of the inequalities:

$$
\sin x \geq \frac{1}{2}, \quad \sin 2 x \geq \frac{1}{2} \quad \text { true? }
$$

3.

MAT 2007 1G] On which of the axes is a sketch of the graph

$$
y=2^{-x} \sin ^{2}\left(x^{2}\right)
$$

Proof of Cosine Rule

We want to use
Pythagoras, so split c into two so that we get two right-angled triangles.

Proof of Sine Rule

The idea is that we can use the common length of $\triangle A C X$ and $\angle X B C$, i.e. h, to connect the two triangles, and therefore connect their angles/length.

