Binomial Expansion

Chapter Overview

1. Pascal's Triangle
2. Factorial Notation
3. Binomial Expansion
4. Using Expansions for Estimation

4	4.1	Understand and use the binomial expansion of $(a+b x)^{n}$ for positive Sequences and series integer $n ;$ the notations $n!$ and C_{r} link to binomial probabilities.	Use of Pascal's triangle. Relation between binomial coefficients.
Also be aware of alternative notations			

Pascal's Triangle:

Starter

a) Expand $(a+b)^{0}$
b) Expand $(a+b)^{1}$
c) Expand $(a+b)^{2}$
d) Expand $(a+b)^{3}$
e) Expand $(a+b)^{4}$

What do you notice about the powers of a and b ?
\square

Example

Find the expansion of $(2+3 x)^{4}$

Example

Find $(1-2 x)^{3}=$

Finding a single term example:
The coefficient of x^{2} in the expansion of $(2-c x)^{5}$ is 720 . Find the possible value(s) of the constant c.

Test Your Understanding

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2+k x)^{7}
$$

where k is a constant. Give each term in its simplest form.
Given that the coefficient of x^{2} is 6 times the coefficient of x,
(b) find the value of k.

Extension

[MAT 2009 1J]
The number of pairs of positive integers x, y which solve the equation:

$$
x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}=2^{30}
$$

is:
A) 0
B) 2^{6}
C) $2^{9}-1$
D) $2^{10}+2$

Factorial Notation

Notation:
\square
\square

For example, suppose you had three letters, A, B and C, and wanted to arrange them in a line to form a 'word', e.g. ACB or BAC.

- There are 3 choices for the first letter.
- There are then 2 choices left for the second letter.
- There is then only 1 choice left for the last letter.

There are therefore $3 \times 2 \times 1=3$! = 6 possible combinations.
Your calculator can calculate a factorial using the \boldsymbol{x} ! button.

For example, if you are a football team captain and need to choose 4 people from amongst 10 in your class, there are $\binom{10}{4}=\frac{10!}{4!6!}=210$ possible selections.
(Note: the $\binom{10}{4}$ notation is preferable to $10 C 4$)
Use the nCr button on your calculator (your calculator input should display "10C4")

Examples:
Calculate the value of the following. You may use the factorial button, but not the nCr button.
a) 5 !
b) $\binom{5}{3}$
c) 0 !
d) $\binom{20}{1}$
e) $\binom{20}{0}$
f) $\binom{20}{2}$
g) $\binom{20}{2}$
g) $\binom{20}{18}$

Binomial Expansion

\square

Example

Find the first 4 terms in the expansion of $(3 x+1)^{10}$, in ascending powers of x.

Test Your Understanding

Find the first 3 terms in the expansion of $\left(2-\frac{1}{3} x\right)^{7}$, in ascending powers of x.

Extension

1. [AEA 2013 Q1a] In the binomial expansion of $\left(1+\frac{12 n}{5} x\right)^{n}$ the coefficients of x^{2} and x^{3} are equal and non-zero.

Find the possible values of n.
2. [STEP I 2010 Q5a] By considering the expansion of $(1+x)^{n}$, where n is a positive integer, or otherwise, show that:

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}
$$

Finding a Single Term in the Expansion

Expression	Power of x in term wanted.	Term in expansion
$(a+x)^{10}$	3	
$(2 x-1)^{75}$	50	
$(3-x)^{12}$	7	

Example

The coefficient of x^{4} in the expansion of $(1+q x)^{10}$ is 3360 . Find the possible value(s) of the constant q.

Test Your Understanding

In the expansion of $(1+a x)^{10}$, where a is a non-zero constant the coefficient of x^{3} is double the coefficient of x^{2}. Find the value of a.

Extension

1. MAT 2014 1G] Let n be a positive integer. The coefficient of $x^{3} y^{5}$ in the expansion of $\left(1+x y+y^{2}\right)^{n}$ equals:
A) n
B) 2^{n}
C) $\binom{n}{3}\binom{n}{5}$
D) $4\binom{n}{4}$
E) $\binom{n}{8}$
2. [STEP I 2013 Q6] By considering the coefficient of x^{r} in the series for $(1+x)(1+x)^{n}$, or otherwise, obtain the following relation between binomial coefficients:

$$
\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}
$$

Using Expansions for Estimating

Example

(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{4}\right)^{8}
$$

giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.025)^{8}$, giving your answer to 4 decimal places.

Test Your Understanding

(a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
(4)
(b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places.

