Lower 6 Chapter 7

Algebraic Methods

Chapter Overview

- 1. Algebraic Fractions
- 2. Algebraic Long Division
- 3. Factor Theorem
- 4. Proof

2 Algebra and functions continued	2.6	Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation and simple algebraic division; use of the factor theorem. Simplify rational expressions, including by factorising and cancelling, and algebraic division (by linear expressions only).	Only division by $(ax + b)$ or $(ax - b)$ will be required. Students should know that if $f(x) = 0$ when $x = a$, then $(x - a)$ is a factor of $f(x)$. Students may be required to factorise cubic expressions such as $x^3 + 3x^2 - 4$ and $6x^3 + 11x^2 - x - 6$. Denominators of rational expressions will be linear or quadratic, e.g. $\frac{1}{ax+b}$, $\frac{ax+b}{px^2+qx+r}$, $\frac{x^3+a^3}{x^2-a^2}$
1 Proof	1.1	Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion; use methods of proof, including:	Examples of proofs:
		Proof by deduction	Proof by deduction
			e.g. using completion of the square, prove that $n^2 - 6n + 10$ is positive for all values of <i>n</i> or, for example, differentiation from first principles for small positive integer powers of <i>x</i> or proving results for arithmetic and geometric series. This is the most commonly used method of proof throughout this specification
		Proof by exhaustion	Proof by exhaustion
			This involves trying all the options. Suppose <i>x</i> and <i>y</i> are odd integers less than 7. Prove that their sum is divisible by 2.
		Disproof by counter	Disproof by counter example
		example	e.g. show that the statement " $n^2 - n + 1$ is a prime number for all values of n'' is untrue

Simplifying Algebraic Fractions

Examples

$$1. \frac{x^2 - 1}{x^2 + x}$$

2.
$$\frac{x^2 + 3x + 2}{x + 1}$$

3.
$$\frac{2x^2 + 11x + 12}{x^2 + 9x + 20}$$
4.
$$\frac{4 - x^2}{x^2 + 2x - 8}$$

Exercise 7A Page 138

Algebraic Long Division

Examples

1.

Test your understanding

1. Find the remainder when $2x^3 - 5x^2 - 16x + 10$ is divided by x - 4.

2. Divide $8x^3 - 1$ by 2x - 1.

Exercise 7B Page 141

Examples

1. Show that (x - 2) is a factor of $x^3 + x^2 - 4x - 4$.

2. Fully factorise $2x^3 + x^2 - 18x - 9$.

Using the factor theorem to find unknown coefficients:

1. Given that 2x + 1 is a factor of $6x^3 + ax^2 + 1$, determine the value of *a*.

Test your understanding

$$f(x) = 6x^3 + 13x^2 - 4$$

- (a) Use the remainder theorem to find the remainder when f(x) is divided by (2x + 3). (2)
- (b) Use the factor theorem to show that (x + 2) is a factor of f(x). (2)
- (c) Factorise f(x) completely. (4)

2. Given that 3x - 1 is a factor of $3x^3 + 11x^2 + ax + 1$, determine the value of *a*.

Extension

1. [MAT 2006 1E] The cubic $x^3 + ax + b$ has both (x - 1) and (x - 2) has factors. Determine the values of a and b.

2. [MAT 2009 1I] The polynomial $n^2x^{2n+3} - 25nx^{n+1} + 150x^7$ has $x^2 - 1$ as a factor

- A) for no values of *n*;
- B) for n = 10 only;
- C) for n = 15 only;
- D) for n = 10 and n = 15 only.

The **remainder theorem** states that if f(x) is divided by (x - a), the remainder is f(a). This similarly works whenever a makes the divisor 0.

(No longer required for A Level)

3. [MAT 2013 1G] Let $n \ge 2$ be an integer and $p_n(x)$ be the polynomial

$$p_n(x) = (x - 1) + (x - 2) + \dots + (x - n)$$

What is the remainder, in terms of *n*, when $p_n(x)$ is divided by $p_{n-1}(x)$?

<u>Proof</u>

- A **conjecture** is a mathematical statement that has yet to be proven.
- A **theorem** is a mathematical statement that has been proven.

Proof by Deduction:

Examples:

1. "Prove that the product of two odd numbers is odd."

2. "Prove that $(3x + 2)(x - 5)(x + 7) \equiv 3x^3 + 8x^2 - 101x - 70$ "

3. Prove that if three consecutive integers are the sides of a right-angled triangle, they must be 3, 4 and 5

Test your Understanding:

Prove that the sum of the squares of two consecutive odd numbers is 2 more than a multiple of 8.

Extension

[STEP I 2005 Q1] 47231 is a five-digit number whose digits sum to

4 + 7 + 2 + 3 + 1 = 17.

- (i) Prove that there are 15 five-digit numbers whose digits sum to 43. You should explain your reasoning clearly.
- (ii) How many five-digit numbers are there whose digits sum to 39?

Example: Prove that $n^2 + n$ is even for all integers n.

Disproof by counter-example

Example: **Disprove the statement:**

" $n^2 - n + 41$ is prime for all integers n."

[Proof by contradiction covered in Year 2]

Exercise 7E Page 152