Proof

- A conjecture is a mathematical statement that has yet to be proven.
- A theorem is a mathematical statement that has been proven.
\square

Proof by Deduction:

\square
Examples:

1. "Prove that the product of two odd numbers is odd."
2. "Prove that $(3 x+2)(x-5)(x+7) \equiv 3 x^{3}+8 x^{2}-101 x-70 "$
3. Prove that if three consecutive integers are the sides of a right-angled triangle, they must be 3,4 and 5

Test your Understanding:
Prove that the sum of the squares of two consecutive odd numbers is $\mathbf{2}$ more than a multiple of 8.

Extension

[STEP I 2005 Q1] 47231 is a five-digit number whose digits sum to
$4+7+2+3+1=17$.
(i) Prove that there are 15 five-digit numbers whose digits sum to 43 . You should explain your reasoning clearly.
(ii) How many five-digit numbers are there whose digits sum to 39 ?

Proof by Exhaustion

\square

Example: Prove that $\boldsymbol{n}^{\mathbf{2}}+\boldsymbol{n}$ is even for all integers \boldsymbol{n}.

Disproof by counter-example
\square
Example: Disprove the statement:
" $n^{2}-n+41$ is prime for all integers n."
[Proof by contradiction covered in Year 2]

