Lower 6 Chapter 5

Linear Graphs

Chapter Overview

- 1. y = mx + c
- 2. Parallel and perpendicular lines
- 3. Lengths and Areas
- 4. Modelling

3.1 Understand and use the equation of a straight line, including the forms

> $y - y_1 = m(x - x_1)$ and ax + by + c = 0;

Gradient conditions for two straight lines to be parallel or perpendicular.

Be able to use straight line models in a variety of contexts. To include the equation of a line through two given points, and the equation of a line parallel (or perpendicular) to a given line through a given point.

m' = m for parallel lines and $m' = -\frac{1}{m}$

for perpendicular lines

For example, the line for converting degrees Celsius to degrees Fahrenheit, distance against time for constant speed, etc.

1. Linear Graphs

Examples:

1. The point (5, a) lies on the line with equation y = 3x + 2. Determine the value of a.

2. Find the coordinate of the point where the line 2x + y = 5 cuts the *x*-axis.

Test Your Understanding:

Determine where the line x + 2y = 3 crosses both the axes

<u>Gradient</u>

Examples:

Find the gradient of the line between the following sets of points:

1. (1, 4) (3, 10)

2. (5, 7) (8, 1)

3. (2, 2) (-1, 10)

4. Show that the points A(3,4), B(5,5), C(11,8) all lie on a straight line.

5. The line joining (2, -5) to (4, a) has gradient -1. Work out the value of a.

y = mx + c

Example:

Determine the gradient and *y*-intercept of the line with equation 4x - 3y + 5 = 0

Example

Express $y = \frac{1}{3}x - \frac{2}{3}$ in the form ax + by + c = 0, where a, b, c are integers.

Test Your Understanding

Express $y = \frac{2}{5}x + \frac{3}{5}$ in the form ax + by + c = 0, where a, b, c are integers.

Exercise 5A/B Page 90-93

Equations using one point and the gradient

Example

Find the equation of the line that goes through (3,5) and has gradient 2.

Quickfire Questions

<u>Gradient</u>	<u>Point</u>	(Unsimplified) Equation
<u>3</u>	<u>(1,2)</u>	
<u>5</u>	<u>(3,0)</u>	
<u>2</u>	<u>(-3,4)</u>	
$\frac{1}{2}$	<u>(1, -5)</u>	
<u>9</u>	<u>(-4, -4)</u>	

Finding a line using 2 Points:

Example

1. Find the equation of the line that goes through (4,5) and (6,2), giving your equation in the form

ax + by + c = 0.

Test Your Understanding:

1. Find the equation of the line that goes through (-1,9) and (4,5), giving your equation in the form ax + by + c = 0.

Exercise 5C Page 94-95

<u>Example</u>

The diagram shows two lines with equations y = 3x and x + 2y = 4, which intersect at the point *P*.

a. Determine the coordinates of *P*.

b. The line x + 2y = 4 intersects the *x*-axis at the point *Q*. Determine the coordinate of *Q*.

Test Your Understanding

The straight line L_1 passes through the points (-1, 3) and (11, 12).

(a) Find an equation for L_1 in the form ax + by + c = 0, where a, b and c are integers.

The line L_2 has equation 3y + 4x - 30 = 0.

(b) Find the coordinates of the point of intersection of L_1 and L_2 .

(3)

(4)

Perpendicular Lines

Quickfire Questions

Gradient	Gradient of Perpendicular Line
2	
-3	
$\frac{1}{4}$	
5	
$-\frac{2}{7}$	
$\frac{7}{5}$	

Problems

1. A line is goes through the point (9,10) and is perpendicular to another line with equation y = 3x + 2. What is the equation of the line?

2. A line L_1 goes through the points A(1,3) and B(3,-1). A second line L_2 is perpendicular to L_1 and passes through point B. Where does L_2 cross the x-axis?

3. Are the following lines parallel, perpendicular, or neither?

$$y = \frac{1}{2}x$$
$$2x - y + 4 = 0$$

Test Your Understanding

1. A line goes through the point (4,7) and is perpendicular to another line with equation y = 2x + 2. What is the equation of the line? Put your answer in the form ax + by + c = 0, where a, b, c are integers.

2. Determine the point *A*.

Extension

1. [MAT 2004 1D] What is the reflection of the point (3,4) in the line 3x + 4y = 50?

2. [MAT 2014 1D] The reflection of the point (1,0) in the line y = mx has coordinates: (in terms of m)

3. [STEP I 2004 Q6] The three points A, B, C have coordinates $(p_1, q_1), (p_2, q_2)$ and (p_3, q_3) , respectively. Find the point of intersection of the line joining A to the midpoint of BC, and the line joining B to the midpoint of AC. Verify that this point lies on the line joining C to the midpoint of AB.

The point *H* has coordinates $(p_1 + p_2 + p_3, q_1 + q_2 + q_3)$. Show that if the line *AH* intersects the line *BC* at right angles, then $p_2^2 + q_2^2 = p_3^2 + q_3^2$, and write down a similar result if the line *BH* intersects the line *AC* at right angles.

Deduce that if AH is perpendicular to BC and also BH is perpendicular to AC, then CH is perpendicular to AB.

Exercise 5E/F Page 96

Distances between points

Examples

Find the distance between

(3,4) and (5,7)

(5,1) and (6,-3)

(0, -2) and (-1, 3)

Test Your Understanding

Find the distance between:

(1,10) and (4,14)

(3, -1) and (0, 1)

(-4, -2) and (-12, 4)

Area of Shapes

Example 1

The diagram shows two lines with equations y = 3x

and x + 2y = 4, which intersect at the point *P*.

a)Determine the coordinates of *P*.

b) The line x + 2y = 4 intersects the *x*-axis at the point *Q*. Determine the area of the triangle *OPQ*.

When y = 0, x = 4

Example 2

a)Determine the length of PQ

b) Determine the area PQR.

Test Your Understanding:

a) Determine the coordinate of *P*.

b) Determine the area of PQR.

c) Determine the length PQ.

Extension [MAT 2001 1C] The shortest distance from the origin to the line 3x + 4y = 25 is what?

Exercise 5G Page 102/103

Modelling with Linear Graphs

Many real life variables have a 'linear' relationship, i.e. there is a fixed increase/decrease in one variable each time the other variable goes up by 1 unit.

Example

The temperature y at different points on a mountain is recorded at different altitudes x. Suppose we were to use a linear model y = mx + c.

a) Determine m and c (you can assume the line goes through (0,70) and (250,20).

b) Interpret the meaning of m and c in this context

c) Predict at what altitude the temperature reaches $0^\circ F$

Example:

The current population of Bickerstonia is 26000. This year (2017) the population increased by 150. Matt decides to model the population P based on the years t after 2017 by the linear model:

P = mt + c

Why might this not be a suitable model?