Lower 6 Chapter 5

Linear Graphs

Chapter Overview

1. $y=m x+c$
2. Parallel and perpendicular lines
3. Lengths and Areas
4. Modelling
3.1

Understand and use the equation of a straight line, including the forms
$y-y_{1}=m\left(x-x_{1}\right)$ and $a x+b y+c=0$;

Gradient conditions for two straight lines to be parallel or perpendicular.
$B e$ able to use straight line models in a variety of contexts.

To include the equation of a line through two given points, and the equation of a line parallel (or perpendicular) to a given line through a given point.
$m^{\prime}=m$ for parallel lines and $m^{\prime}=-\frac{1}{m}$ for perpendicular lines

For example, the line for converting degrees Celsius to degrees
Fahrenheit, distance against time for constant speed, etc.

1. Linear Graphs

\square

Examples:

1. The point $(5, a)$ lies on the line with equation $y=3 x+2$. Determine the value of a.
2. Find the coordinate of the point where the line $2 x+y=5$ cuts the x-axis.

Test Your Understanding:
Determine where the line $x+2 y=3$ crosses both the axes

Gradient

\square

Examples:

Find the gradient of the line between the following sets of points:

1. $(1,4)(3,10)$
2. $(5,7)(8,1)$
3. $(2,2)(-1,10)$
4. Show that the points $A(3,4), B(5,5), C(11,8)$ all lie on a straight line.
5. The line joining $(2,-5)$ to $(4, a)$ has gradient -1 . Work out the value of a.

$y=m x+c$

\square
Example:
Determine the gradient and y-intercept of the line with equation $4 x-3 y+$ $5=0$

$a x+b y+c=0$

\square

Example

Express $y=\frac{1}{3} x-\frac{2}{3}$ in the form $a x+b y+c=0$, where a, b, c are integers.

Test Your Understanding
Express $y=\frac{2}{5} x+\frac{3}{5}$ in the form $a x+b y+c=0$, where a, b, c are integers.

Equations using one point and the gradient
\square

Example

Find the equation of the line that goes through $(3,5)$ and has gradient 2.

Quickfire Questions

Gradient	Point	(Unsimplified) Equation
$\underline{3}$	$\underline{(1,2)}$	
$\underline{5}$	$\underline{(3,0)}$	
$\underline{2}$	$\underline{(-3,4)}$	
$\frac{1}{2}$	$\underline{(1,-5)}$	
$\underline{9}$	$(-4,-4)$	

Finding a line using 2 Points:

Example

1. Find the equation of the line that goes through $(4,5)$ and $(6,2)$, giving your equation in the form
$a x+b y+c=0$.

Test Your Understanding:

1. Find the equation of the line that goes through $(-1,9)$ and $(4,5)$, giving your equation in the form
$a x+b y+c=0$.

Intersection of Lines:
\square

Example

The diagram shows two lines with equations $y=3 x$ and $x+2 y=4$, which intersect at the point P.
a. Determine the coordinates of P.
b. The line $x+2 y=4$ intersects the x-axis at the point Q. Determine the coordinate of Q.

Test Your Understanding

The straight line L_{1} passes through the points $(-1,3)$ and $(11,12)$.
(a) Find an equation for L_{1} in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{2} has equation $3 y+4 x-30=0$.
(b) Find the coordinates of the point of intersection of L_{1} and L_{2}.
(3)

Perpendicular Lines

\square

Quickfire Questions

Gradient	Gradient of Perpendicular Line
2	
-3	
$\frac{1}{4}$	
5	
$-\frac{2}{7}$	
$\frac{7}{5}$	

Problems

1. A line is goes through the point $(9,10)$ and is perpendicular to another line with equation $y=3 x+2$. What is the equation of the line?
2. A line L_{1} goes through the points $A(1,3)$ and $B(3,-1)$. A second line L_{2} is perpendicular to L_{1} and passes through point B . Where does L_{2} cross the x axis?
3. Are the following lines parallel, perpendicular, or neither?

$$
\begin{gathered}
y=\frac{1}{2} x \\
2 x-y+4=0
\end{gathered}
$$

Test Your Understanding

1. A line goes through the point $(4,7)$ and is perpendicular to another line with equation $y=2 x+2$. What is the equation of the line? Put your answer in the form $a x+b y+c=0$, where a, b, c are integers.
2. Determine the point A.

Extension

1. [MAT 2004 1D]

What is the reflection of the point $(3,4)$ in the line $3 x+4 y=50$?
2. [MAT 2014 1D] The reflection of the point $(1,0)$ in the line $y=m x$ has coordinates: (in terms of m)
3. [STEP I 2004 Q6] The three points A, B, C have coordinates $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$, respectively. Find the point of intersection of the line joining A to the midpoint of $B C$, and the line joining B to the midpoint of $A C$. Verify that this point lies on the line joining C to the midpoint of $A B$.

The point H has coordinates $\left(p_{1}+p_{2}+p_{3}, q_{1}+q_{2}+q_{3}\right)$. Show that if the line $A H$ intersects the line $B C$ at right angles, then $p_{2}^{2}+q_{2}^{2}=p_{3}^{2}+q_{3}^{2}$, and write down a similar result if the line $B H$ intersects the line $A C$ at right angles.

Deduce that if $A H$ is perpendicular to $B C$ and also $B H$ is perpendicular to $A C$, then $C H$ is perpendicular to $A B$.

Distances between points

\square
Examples
Find the distance between
$(3,4)$ and $(5,7)$
$(5,1)$ and $(6,-3)$
$(0,-2)$ and $(-1,3)$

Test Your Understanding

Find the distance between:
$(1,10)$ and $(4,14)$
$(3,-1)$ and $(0,1)$
$(-4,-2)$ and $(-12,4)$

Area of Shapes

Example 1

The diagram shows two lines with equations $y=3 x$ and $x+2 y=4$, which intersect at the point P.
a)Determine the coordinates of P.

b) The line $x+2 y=4$ intersects the x-axis at the point Q. Determine the area of the triangle $O P Q$.

When $y=0, x=4$

Example 2

a)Determine the length of $P Q$

b) Determine the area $P Q R$.

Test Your Understanding:

a) Determine the coordinate of P.

b) Determine the area of $P Q R$.
c) Determine the length $P Q$.

Extension

[MAT 2001 1C]
The shortest distance from the origin to the line $3 x+4 y=25$ is what?

Modelling with Linear Graphs

Many real life variables have a 'linear' relationship, i.e. there is a fixed increase/decrease in one variable each time the other variable goes up by 1 unit.

Example

The temperature y at different points on a mountain is recorded at different altitudes x.
Suppose we were to use a linear model $y=m x+c$.
a) Determine m and c (you can assume the line goes through $(0,70)$ and $(250,20)$.

b) Interpret the meaning of m and c in this context
c) Predict at what altitude the temperature reaches $0^{\circ} \mathrm{F}$

Evaluating a Model

\square
Example:
The current population of Bickerstonia is 26000. This year (2017) the population increased by 150. Matt decides to model the population P based on the years t after 2017 by the linear model:

$$
P=m t+c
$$

Why might this not be a suitable model?

