Chapter 4

Graphs and Transformations

Chapter Overview

1. Polynomial Graphs
a. Cubic Graphs
b. Quartic Graphs
c. Reciprocal Graphs

2. Points of Intersection

3. Graph Transformations

Understand and use graphs of functions; sketch curves defined by simple equations including polynomials
$y=\frac{a}{x}$ and $y=\frac{a}{x^{2}}$
(including their vertical and horizontal asymptotes)

Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations.

Graph to include simple cubic and quartic functions,
e.g. sketch the graph with equation $y=x^{2}(2 x-1)^{2}$

The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y=\frac{2}{x+a}+b$ are the lines with equations $y=b$ and $x=-a$

Understand the effect of simple transformations on the graph of $y=\mathrm{f}(x)$, including sketching associated graphs:
$y=a \mathrm{f}(x), \quad y=\mathrm{f}(x)+a$,
$y=\mathrm{f}(x+a), y=\mathrm{f}(a x)$
and combinations of these transformations

Students should be able to find the graphs of $y=|\mathrm{f}(x)|$ and $y=|\mathrm{f}(-x)|$, given the graph of $y=\mathrm{f}(x)$.

Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics, reciprocal, $\frac{a}{x^{2}},|x|, \sin x, \cos x, \tan x, \mathrm{e}^{x}$ and a^{x}) and sketch the resulting graph.

Given the graph of $y=\mathrm{f}(x)$, students
should be able to sketch the graph of, e.g.
$y=2 \mathrm{f}(3 x)$, or $y=\mathrm{f}(-x)+1$,
and should be able to sketch
(for example)
$y=3+\sin 2 x, y=-\cos \left(x+\frac{\pi}{4}\right)$

Polynomial Graphs

Equation	If $a>0$	Resulting Shape	If $a<0$	Resulting Shape
$y=a x^{2}+b x+c$	As $x \rightarrow \infty, y \rightarrow \infty$ As $x \rightarrow-\infty, y \rightarrow \infty$		As $x \rightarrow \infty, y \rightarrow-\infty$ As $x \rightarrow-\infty, y \rightarrow-\infty$	
$y=a x^{3}+b x^{2}$ $+c x+d$				
$y=a x^{4}+b x^{3}+$ $c x^{2}+d x+e$				
$y=a x^{5}+b x^{4}+\cdots$				

Cubics

Examples

1. Sketch the curve with equation $y=(x-2)(1-x)(1+x)$

We consider the shape, the roots and the y -intercept.
2. Sketch the curve with equation $y=x^{2}(x-1)$
3. Sketch the curve with equation $y=(2-x)(x+1)^{2}$
4. Sketch the curve with equation $y=(x-4)^{3}$

5. Sketch the curve with equation $y=(x+1)\left(x^{2}+x+1\right)$

Finding the equation: example

The graph shows a sketch of the curve C with equation $y=f(x)$. The curve C passes through the point $(-1,0)$ and touches the x-axis at the point $(2,0)$. The curve C has a maximum at the point (0,4). The equation of the curve C can be written in the form $y=x^{3}+a x^{2}+b x+c$ where a, b and c are integers.

Calculate the values of a, b, c.

Test Your Understanding:

1. Sketch the curve with equation $y=x(x-3)^{2}$
2. Sketch the curve with equation $y=-(x+2)^{3}$
3. A curve has this shape, touches the x axis at 3 and crosses the x axis at -2 . Give a suitable equation for this graph.

4. Extension. Sketch the curve with equation $y=2 x^{2}(x-1)(x+1)^{3}$
[MAT 2012 1E] Which one of the following equations could possibly have the graph given below?

A) $y=(3-x)^{2}(3+x)^{2}(1-x)$
B) $y=-x^{2}(x-9)\left(x^{2}-3\right)$
C) $y=(x-6)(x-2)^{2}(x+2)^{2}$
D) $y=\left(x^{2}-1\right)^{2}(3-x)$
[MAT 2011 1A] A sketch of the graph $y=x^{3}-x^{2}-x+1$ appears on which of the following axis?

(b)
(a)

(c)

(d)

Quartics:

Examples:

1. Sketch the curve with equation $y=x(x+1)(x-2)(x-3)$
2. Sketch the curve with equation $y=(x-2)^{2}(x+1)(3-x)$
3. Sketch the curve with equation $y=(x+1)(x-1)^{3}$
4. Sketch the curve with equation $y=(x-2)^{4}$
5. Sketch the curve with equation $y=x^{2}(x+1)(x-1)$
6. Sketch the curve with equation $y=-(x+1)(x-3)^{3}$

Extension:
[STEP I 2012 Q2a]
a. Sketch $y=x^{4}-6 x^{2}+9$
b. For what values of b does the equation $\mathrm{y}=x^{4}-6 x^{2}+b$ have the following number of distinct roots (i) 0 , (ii) 1 , (iii) 2 , (iv) 3 , (v) 4.

Reciprocal Graphs

1. Sketch $y=\frac{1}{x}$
2. Sketch $y=-\frac{3}{x}$
3. Sketch $y=\frac{3}{x^{2}}$
4. Sketch $y=-\frac{4}{x^{2}}$
5. On the same axes, sketch $y=\frac{1}{x}$ and $y=\frac{3}{x}$

Points of Intersection

If $y=f(x)$ and $y=g(x)$, then the x values of the points of intersection can be found when $f(x)=g(x)$.

Examples:

1. On the same diagram sketch the curves with equations $y=x(x-3)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.
2. On the same diagram sketch the curves with equations $y=x^{2}(3 x-a)$ and $y=\frac{b}{x^{\prime}}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(3 x-a)-\frac{b}{x}=0$

Test Your Understanding

On the same diagram sketch the curves with equations $y=x(x-4)$ and $y=x(x-2)^{2}$, and hence find the coordinates of any points of intersection.

Extension

1. [MAT 2005 1B]

The equation $\left(x^{2}+1\right)^{10}=2 x-x^{2}-2$
A) has $x=2$ as a solution;
B) has no real solutions;
C) has an odd number of real solutions;
D) has twenty real solutions.
2. [MAT 2010 1A] The values of k for which the line $y=k x$ intersects the parabola $y=(x-1)^{2}$ are precisely
A) $k \leq 0$
B) $k \geq-4$
C) $k \geq 0$ or $k \leq-4$
D) $-4 \leq k \leq 0$
3. [MAT 2013 1D]

Which of the following sketches is a graph of $x^{4}-y^{2}=2 y+1$?

(a)

(b)

(c)

(d)

Transformations of Graphs

It is important to understand the effects of simple transformations on the graph $y=f(x)$.

For $y=f(x)$:

Function	Effect
$f(x+a)$	
$f(x-a)$	
$f(x)+a$	
$f(x)-a$	
$f(a x)$	
$a f(x)$	
$f(-x)$	
$-f(x)$	

We can think of it like this:

	Affects which axis?	What we expect or opposite?
Change inside $f()$		
Change outside $f()$		

Examples: Describe the transformation

1. $y=f(x-3)$
2. $y=f(x)+4$
3. $y=f(5 x)$
4. $y=2 f(x)$

Example

1. Sketch $y=x^{2}+3$
2. Sketch $y=\frac{2}{x+1}$
3. Sketch $y=x(x+2)$. On the same axes, sketch $y=(x-a)(x-a+$ $2)$, where $a>2$.
4. Sketch $y=x^{2}(x-4)$. On the same axes, sketch the graph with equation $y=(2 x)^{2}(2 x-4)$.

Reflections

Example

If $y=x(x+2)$, sketch $y=f(x)$ and $y=-f(x)$ on the same axes.

Test your understanding

1. If $y=(x+1)(x-2)$, sketch $y=f(x)$ and $y=f\left(\frac{x}{3}\right)$ on the same axes.
2. Sketch the graph of $y=\frac{2}{x}+1$, ensuring you indicate any intercepts with the axes.

The effect of transformations on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform.

Where would each of these points end up?

$y=f(x)$	$(\mathbf{4}, \mathbf{3})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{6},-\mathbf{4})$
$y=f(x+1)$			
$y=f(2 x)$			
$y=3 f(x)$			
$y=f(x)-1$			
$y=f\left(\frac{x}{4}\right)$			
$y=f(-x)$			
$y=-f(x)$			

Test Your Understanding

Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$, where

$$
f(x)=x^{2}(9-2 x)
$$

There is a minimum at the origin, a maximum at the point $(3,27)$ and C cuts the x-axis at the point A.
(a) Write down the coordinates of the point A.
(1)
(b) On separate diagrams sketch the curve with equation
(i) $y=\mathrm{f}(x+3)$,
(ii) $y=\mathrm{f}(3 x)$.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

The curve with equation $y=\mathrm{f}(x)+k$, where k is a constant, has a maximum point at $(3,10)$.
(c) Write down the value of k.
(1)
a)
b)

c)

