Chapter 4

Graphs and Transformations

Chapter Overview

1. Polynomial Graphs

- a. Cubic Graphs
- b. Quartic Graphs
- c. Reciprocal Graphs
- 2. Points of Intersection
- 3. Graph Transformations

Understand and use graphs of functions; sketch curves defined by simple equations including polynomials

$$y = \frac{a}{x}$$
 and $y = \frac{a}{x^2}$

(including their vertical and horizontal asymptotes)

Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations. Graph to include simple cubic and quartic functions,

e.g. sketch the graph with equation $y = x^2(2x - 1)^2$

The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y = \frac{2}{x+a} + b$ are the lines with equations y = b and x = -a

Understand the effect of simple transformations on the graph of y = f(x), including sketching associated graphs:

 $y = a\mathbf{f}(x), \quad y = \mathbf{f}(x) + a,$

 $y = \mathbf{f}(x + a), y = \mathbf{f}(ax)$

and combinations of these transformations

Students should be able to find the graphs of $y = |\mathbf{f}(x)|$ and $y = |\mathbf{f}(-x)|$, given the graph of $y = \mathbf{f}(x)$.

Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics, reciprocal, $\frac{a}{x^2}$, |x|, sin x, cos x, tan x, e^x

and a^{x}) and sketch the resulting graph.

Given the graph of y = f(x), students should be able to sketch the graph of, e.g. y = 2f(3x), or y = f(-x) + 1,

and should be able to sketch (for example)

$$y = 3 + \sin 2x, \ y = -\cos\left(x + \frac{\pi}{4}\right)$$

Polynomial Graphs

Equation	If $a > 0$	Resulting Shape	If <i>a</i> < 0	Resulting Shape
	As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to \infty$		As $x \to \infty$, $y \to -\infty$ As $x \to -\infty$, $y \to -\infty$	
$y = ax^3 + bx^2 + cx + d$				
$y = ax^4 + bx^3 + cx^2 + dx + e$				
$y = ax^5 + bx^4 + \cdots$				

<u>Cubics</u>

Examples

1. Sketch the curve with equation y = (x - 2)(1 - x)(1 + x)

We consider the shape, the roots and the y – intercept.

2. Sketch the curve with equation $y = x^2(x - 1)$

3. Sketch the curve with equation $y = (2 - x)(x + 1)^2$

4. Sketch the curve with equation $y = (x - 4)^3$

5. Sketch the curve with equation $y = (x + 1)(x^2 + x + 1)$

Finding the equation: example

The graph shows a sketch of the curve *C* with equation y = f(x). The curve *C* passes through the point (-1, 0) and touches the *x*-axis at the point (2, 0). The curve *C* has a maximum at the point (0, 4). The equation of the curve *C* can be written in the form $y = x^3 + ax^2 + bx + c$ where *a*, *b* and *c* are integers.

Calculate the values of *a*, *b*, *c*.

Test Your Understanding:

1. Sketch the curve with equation $y = x(x - 3)^2$

2. Sketch the curve with equation $y = -(x + 2)^3$

3. A curve has this shape , touches the x axis at 3 and crosses the x axis at -2. Give a suitable equation for this graph.

4. Extension. Sketch the curve with equation $y = 2x^2(x-1)(x+1)^3$

[MAT 2012 1E] Which one of the following equations could possibly have the graph given below?

A)
$$y = (3 - x)^2(3 + x)^2(1 - x)$$

B) $y = -x^2(x - 9)(x^2 - 3)$
C) $y = (x - 6)(x - 2)^2(x + 2)^2$
D) $y = (x^2 - 1)^2(3 - x)$

[MAT 2011 1A] A sketch of the graph $y = x^3 - x^2 - x + 1$ appears on which of the following axis?

Exercise 4A Page 62

Quartics:

Examples:

1. Sketch the curve with equation y = x(x + 1)(x - 2)(x - 3)

2. Sketch the curve with equation $y = (x - 2)^2(x + 1)(3 - x)$

3. Sketch the curve with equation $y = (x + 1)(x - 1)^3$

4. Sketch the curve with equation $y = (x - 2)^4$

Test Your Understanding

1. Sketch the curve with equation $y = x^2(x + 1)(x - 1)$

2. Sketch the curve with equation $y = -(x + 1)(x - 3)^3$

Extension:

[STEP | 2012 Q2a]

- a. Sketch $y = x^4 6x^2 + 9$
- b. For what values of *b* does the equation $y = x^4 6x^2 + b$ have the following number of <u>distinct</u> roots (i) 0, (ii) 1, (iii) 2, (iv) 3, (v) 4.

Exercise 4B Page 65

1. Sketch
$$y = \frac{1}{x}$$
 2. Sketch $y = -\frac{3}{x}$

3. Sketch
$$y = \frac{3}{x^2}$$
 4. Sketch $y = -\frac{4}{x^2}$

5. On the same axes, sketch
$$y = \frac{1}{x}$$
 and $y = \frac{3}{x}$

Exercise 4C Page 67

Points of Intersection

If y = f(x) and y = g(x), then the x values of the points of intersection can be found when f(x) = g(x).

Examples:

1. On the same diagram sketch the curves with equations y = x(x - 3) and $y = x^2(1 - x)$. Find the coordinates of their points of intersection.

2. On the same diagram sketch the curves with equations $y = x^2(3x - a)$ and $y = \frac{b}{x}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^2(3x - a) - \frac{b}{x} = 0$

Test Your Understanding

On the same diagram sketch the curves with equations y = x(x - 4) and $y = x(x - 2)^2$, and hence find the coordinates of any points of intersection.

Extension

1. [MAT 2005 1B]

The equation $(x^2 + 1)^{10} = 2x - x^2 - 2$

- A) has x = 2 as a solution;
- B) has no real solutions;
- C) has an odd number of real solutions;
- D) has twenty real solutions.

2. [MAT 2010 1A] The values of k for which the line y = kx intersects the parabola $y = (x - 1)^2$ are precisely

- A) $k \le 0$ B) $k \ge -4$
- C) $k \ge 0$ or $k \le -4$ D) $-4 \le k \le 0$

3. [MAT 2013 1D]

Which of the following sketches is a graph of $x^4 - y^2 = 2y + 1$?

Transformations of Graphs

It is important to understand the effects of simple transformations on the graph y = f(x).

For y = f(x):

Function	Effect
f(x+a)	
f(x-a)	
f(x) + a	
f(x) - a	
f(ax)	
af(x)	
f(-x)	
-f(x)	

We can think of it like this:

	Affects which axis?	What we expect or opposite?
Change inside $f()$		
Change outside $f()$		

Examples: Describe the transformation

- 1. y = f(x 3)
- 2. y = f(x) + 4
- 3. y = f(5x)
- 4. y = 2f(x)

Example

1. Sketch $y = x^2 + 3$

2. Sketch
$$y = \frac{2}{x+1}$$

3. Sketch y = x(x + 2). On the same axes, sketch y = (x - a)(x - a + 2), where a > 2.

4. Sketch $y = x^2(x - 4)$. On the same axes, sketch the graph with equation $y = (2x)^2(2x - 4)$.

Reflections

Example

If y = x(x + 2), sketch y = f(x) and y = -f(x) on the same axes.

Test your understanding

1. If
$$y = (x + 1)(x - 2)$$
, sketch $y = f(x)$ and $y = f(\frac{x}{3})$ on the same axes.

2. Sketch the graph of $y = \frac{2}{x} + 1$, ensuring you indicate any intercepts with the axes.

The effect of transformations on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform.

Where would each of these points end up?

y = f(x)	(4,3)	(1,0)	(6, -4)
y = f(x+1)			
y = f(2x)			
y = 3f(x)			
y = f(x) - 1			
$y = f\left(\frac{x}{4}\right)$			
y = f(-x)			
y = -f(x)			

Test Your Understanding

Figure 1 shows a sketch of the curve C with equation y = f(x), where

$$f(x) = x^2(9 - 2x).$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

- (a) Write down the coordinates of the point A.
- (b) On separate diagrams sketch the curve with equation
 - (i) y = f(x + 3),
 - (ii) y = f(3x).

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes. (6)

The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

(c) Write down the value of k.

(1)

(1)

a)

b)

