Chapter 3

Equations and Inequalities

Chapter Overview

1. Simultaneous Equations

2. Simultaneous Equations Using Graphs

3. Set Builder Notation

4. Solving Inequalities

5. Sketching Inequalities

2.4	Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation.	The quadratic may involve powers of 2 in one unknown or in both unknowns, e.g. solve $y=2 x+3, y=x^{2}-4 x+8$ or $2 x-3 y=6, x^{2}-y^{2}+3 x=50$

2.5	Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically, including inequalities with brackets and fractions. Express solutions through correct use of 'and' and 'or', or through set notation. Represent linear and quadratic inequalities such as $y>x+1$ and $y>a x^{2}+b x+c$ graphically.	e.g. solving $\begin{aligned} & a x+b>c x+d, \\ & p x^{2}+q x+r \geq 0, \\ & p x^{2}+q x+r<a x+b \end{aligned}$ and interpreting the third inequality as the range of x for which the curve $y=p x^{2}+q x+r$ is below the line with equation $y=a x+b$ These would be reducible to linear or quadratic inequalities e.g. $\frac{a}{x}<b$ becomes $a x<b x^{2}$ So, e.g. $x<a$ or $x>b$ is equivalent to $\{x: x<a\} \cup\{x: x>b\}$ and $\{x: c<x\} \cap\{x: x<d\}$ is equivalent to $x>c$ and $x<d$ Shading and use of dotted and solid line convention is required.

Simultaneous Equations

Linear Equations:

Example:

Solve the simultaneous equations

$$
\begin{gathered}
3 x+y=8 \\
2 x-3 y=9
\end{gathered}
$$

Method 1 : Elimination
Method 2: Substitution

Linear and Quadratic

Example:

Solve the simultaneous equations:

$$
\begin{gathered}
x+2 y=3 \\
x^{2}+3 x y=10
\end{gathered}
$$

Test Your Understanding:

1. Solve the simultaneous equations: $3 x^{2}+y^{2}=21$ and $y=x+1$

Extension:

1.

[MAT 2012 1G] There are positive real numbers x and y which solve the equations $2 x+k y=4, x+y=k$ for:
A) All values of k;
B) No values of k;
C) $k=2$ only;
D) Only $k>-2$
2. [STEP 2010 Q1] Given that

$$
5 x^{2}+2 y^{2}-6 x y+4 x-4 y \equiv a(x-y+2)^{2}+b(c x+y)^{2}+d
$$

a) Find the values of a, b, c, d.
b) Solve the simultaneous equations:

$$
\begin{gathered}
5 x^{2}+2 y^{2}-6 x y+4 x-4 y=9 \\
6 x^{2}+3 y^{2}-8 x y+8 x-8 y=14
\end{gathered}
$$

(Hint: Can we use the same method in (a) to rewrite the second equation?)

Simultaneous Equations and Graphs

Examples:

1a. On the same axes, draw the graphs of $2 x+y=3$ and

$$
y=x^{2}-3 x+1
$$

1b. Use your graph to write down the solutions to the simultaneous equations

1c. What algebraic method could we have used to show the graphs would have intersected twice?

Example 2

a) On the same axes, draw the graphs of:

$$
y=2 x-2 \quad y=x^{2}+4 x+1
$$

b) Prove algebraically that the lines never meet

Question: The line with equation $y=2 x+1$ meets the curve with equation $k x^{2}+2 y+(k-2)=0$ at exactly one point. Given that k is a positive constant:
a) Find the value of k.
b) For this value of k, find the coordinates of this point of intersection

Recap from GCSE:

- We use curly braces to list the values in a set, e.g. $A=\{1,4,6,7\}$
- If A and B are sets then $A \cap B$ is the intersection of A and B, giving a set which has the elements in A and B.
- $A \cup B$ is the union of A and B, giving a set which has the elements in A or in B.
- \varnothing is the empty set, i.e. the set with nothing in it.
- Sets can also be infinitely large. \mathbb{N} is the set of natural numbers (all positive integers), \mathbb{Z} is the set of all integers (including negative numbers and 0) and \mathbb{R} is the set of all real numbers (including all possible decimals).
- We write $x \in A$ to mean " x is a member of the set A ". So $x \in \mathbb{R}$

Examples:

1. $\{2 x: x \in \mathbb{Z}\}$
2. $\left\{2^{x}: x \in \mathbb{N}\right\}$
3. $\{x y: x, y$ are prime $\}$

Solving Inequalities

Linear inequalities Examples

1. $2 x+1>5$
2. $3(x-5) \geq 5-2(x-8)$
3. $-x \geq 2$

Combining Inequalities

When combining inequalities always draw a number line to help!

Example:

If $x<3$ and $2 \leq x<4$, what is the combined solution set?

Quadratic Inequalities:

Examples

1. Solve $x^{2}+2 x-15>0$
2. Solve $x^{2}+2 x-15 \leq 0$
3. Solve $x^{2}+5 x \geq-4$
4. Solve $x^{2}<9$

Test Your Understanding

Find the set of values of x for which
(a) $3(x-2)<8-2 x$,
(b) $(2 x-7)(1+x)<0$,
(3)
(c) both $3(x-2)<8-2 x$ and $(2 x-7)(1+x)<0$.
(1)

Given that the equation $2 q x^{2}+q x-1=0$, where q is a constant, has no real roots,
(a) show that $q^{2}+8 q<0$.
(b) Hence find the set of possible values of q.

Division by x

Find the set of values for which $\frac{6}{x}>2, \quad x \neq 0$

Sketching Inequalities:

Examples

1. L_{1} has equation $y=12+4 x . L_{2}$ has equation $y=x^{2}$.

The diagram shows a sketch of L_{1} and L_{2} on the same axes.
a) Find the coordinates of P_{1} and P_{2}, the points of intersection.
b) Hence write down the solution to the inequality
$12+4 x>x^{2}$.

2. Shade the region that satisfies the inequalities:

$$
\begin{gathered}
2 y+x<14 \\
y \geq x^{2}-3 x-4
\end{gathered}
$$

