Transforming Trig Graphs

We can use our knowledge of transforming graphs to transform trig graphs.

Recap

Examples

1. Sketch $y = 4 \sin x$, $0 \le x \le 360^{\circ}$

2. Sketch $y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$

3. Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$

4. Sketch
$$y = \sin\left(\frac{x}{2}\right)$$
, $0 \le x \le 360^\circ$

Extension

1.

[MAT 2013 1B] The graph of $y = \sin x$ is reflected first in the line $x = \pi$ and then in the line y = 2. The resulting graph has equation:

- A) $y = \cos x$
- B) $y = 2 + \sin x$
- C) $y = 4 + \sin x$
- D) $y = 2 \cos x$

2.

[MAT 2011 1D] What fraction of the interval $0 \le x \le 360^\circ$ is one (or both) of the inequalities:

 $\sin x \ge \frac{1}{2}$, $\sin 2x \ge \frac{1}{2}$ true?

MAT 2007 1G] On which of the axes is a sketch of the graph

 $y = 2^{-x} \sin^2(x^2)$