Transforming Trig Graphs

We can use our knowledge of transforming graphs to transform trig graphs.

Recap
\square

Examples

1. Sketch $y=4 \sin x, 0 \leq x \leq 360^{\circ}$
2. Sketch $y=\cos \left(x+45^{\circ}\right), 0 \leq x \leq 360^{\circ}$
3. Sketch $y=-\tan x, 0 \leq x \leq 360^{\circ}$
4. Sketch $y=\sin \left(\frac{x}{2}\right), 0 \leq x \leq 360^{\circ}$

Extension

1.

[MAT 2013 1B] The graph of $y=\sin x$ is reflected first in the line $x=\pi$ and then in the line $y=2$. The resulting graph has equation:
A) $y=\cos x$
B) $y=2+\sin x$
C) $y=4+\sin x$
D) $y=2-\cos x$
2.
[MAT 2011 1D] What fraction of the interval $0 \leq x \leq 360^{\circ}$ is one (or both) of the inequalities:

$$
\sin x \geq \frac{1}{2}, \quad \sin 2 x \geq \frac{1}{2} \quad \text { true? }
$$

3.

MAT 2007 1G] On which of the axes is a sketch of the graph

$$
y=2^{-x} \sin ^{2}\left(x^{2}\right)
$$

