Problem solving with sin/cos rule

Example

The diagram shows the locations of four mobile phone masts in a field, $B C=75 \mathrm{~m} . C D=$ 80 m , angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.

In order that the masts do not interfere with each other, they must be at least 70m apart. Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.

Using the sine rule twice:
\square your

understanding

1.

2.

Extension

1. [AEA 2009 Q5a] The sides of the triangle $A B C$ have lengths $B C=a, A C=b$ and $A B=c$, where $a<b<c$. The sizes of the angles A, B and C form an arithmetic sequence.
(i) Show that the area of triangle $A B C$ is $a c \frac{\sqrt{3}}{4}$.

Given that $a=2$ and $\sin A=\frac{\sqrt{15}}{5}$, find
(ii) the value of b,
(iii) the value of c.

