Problem solving with sin/cos rule

Example

The diagram shows the locations of four mobile phone masts in a field, $BC = 75 \, m$. CD = 80 m, angle $BCD = 55^{\circ}$ and angle $ADC = 140^{\circ}$.

In order that the masts do not interfere with each other, they must be at least 70m apart.

Given that A is the minimum distance from D, find:

- a) The distance A is from B
- b) The angle *BAD*
- c) The area enclosed by the four masts.

Using the sine rule twice:

Te
yo

st ur

understanding

1.

Extension

- 1. [AEA 2009 Q5a] The sides of the triangle ABC have lengths BC=a, AC=b and AB=c, where a < b < c. The sizes of the angles A, B and C form an arithmetic sequence.
- (i) Show that the area of triangle ABC is $ac\frac{\sqrt{3}}{4}$. Given that a=2 and $\sin A=\frac{\sqrt{15}}{5}$, find

- (ii) the value of b,
- (iii) the value of c.