The Sine Rule

Proof of Sine Rule

The idea is that we can use the common length of ΔACX and $\angle XBC$, i.e. h, to connect the two triangles, and therefore connect their angles/length.

Examples:

3.

4.

Extension

[MAT 2011 1E]

The circle in the diagram has centre C. Three angles α , β , γ are also indicated.

The angles α , β , γ are related by the equation:

- A) $\cos \alpha = \sin(\beta + \gamma)$
- B) $\sin \beta = \sin \alpha \sin \gamma$
- C) $\sin \beta (1 \cos \alpha) = \sin \gamma$
- D) $sin(\alpha + \beta) = cos \gamma sin \alpha$