Chapter Overview

1. Sine/ Cosine Rule
2. Areas of Triangles
3. Trig Graphs
4. Proof of Sine/ Cosine Rule

5	5.1	Understand and use the definitions of sine, cosine and tangent for all arguments;	Use of x and y coordinates of points on the unit circle to give cosine and sine respectively,		
The sine and cosine rules;					
the area of a triangle in the					
form $\frac{1}{2} a b \sin C$				\quad	including the ambiguous case of the
:---					
sine rule.					

5.3 Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity.

Knowledge of graphs of curves with equations such as $y=\sin x$, $y=\cos \left(x+30^{\circ}\right), y=\tan 2 x$ is expected.

The Cosine Rule

You have	You want	Use
\#1: Two angle-side opposite pairs	Missing angle or side in one pair	Sine rule
\#2 Two sides known and a missing side opposite a known angle	Remaining side	Cosine rule
\#3 All three sides	An angle	Cosine rule
\#4 Two sides known and a missing side not opposite known angle	Remaining side	Sine rule twice
Examples:		

Proof of Cosine Rule

We want to use
Pythagoras, so split c into two so that we get two right-angled triangles.

1.

12

2.

3. Coastguard station B is 8 km , on a bearing of 060°, from coastguard station A. A ship C is 4.8 km on a bearing of 018°, away from A. Calculate how far C is from B.

Test Your understanding
1.

2.

3.

