Finding a Single Term in the Expansion

Expression	Power of x in term wanted.	Term in expansion
$(a+x)^{10}$	3	
$(2 x-1)^{75}$	50	
$(3-x)^{12}$	7	

Example

The coefficient of x^{4} in the expansion of $(1+q x)^{10}$ is 3360 . Find the possible value(s) of the constant q.

Test Your Understanding

In the expansion of $(1+a x)^{10}$, where a is a non-zero constant the coefficient of x^{3} is double the coefficient of x^{2}. Find the value of a.

Extension

1. MAT 2014 1G] Let n be a positive integer. The coefficient of $x^{3} y^{5}$ in the expansion of $\left(1+x y+y^{2}\right)^{n}$ equals:
A) n
B) 2^{n}
C) $\binom{n}{3}\binom{n}{5}$
D) $4\binom{n}{4}$
E) $\binom{n}{8}$
2. [STEP I 2013 Q6] By considering the coefficient of x^{r} in the series for $(1+x)(1+x)^{n}$, or otherwise, obtain the following relation between binomial coefficients:

$$
\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}
$$

