Finding a Single Term in the Expansion

Expression	Power of x in term wanted.	Term in expansion
$(a+x)^{10}$	3	
$(2x-1)^{75}$	50	
$(3-x)^{12}$	7	
$(3x+4)^{16}$	3	

Example

The coefficient of x^4 in the expansion of $(1 + qx)^{10}$ is 3360. Find the possible value(s) of the constant q.

Test Your Understanding

In the expansion of $(1 + ax)^{10}$, where *a* is a non-zero constant the coefficient of x^3 is double the coefficient of x^2 . Find the value of *a*.

Extension

- 1. MAT 2014 1G] Let n be a positive integer. The coefficient of x^3y^5 in the expansion of $(1 + xy + y^2)^n$ equals:
- A) n
- B) 2ⁿ
- C) $\binom{n}{3}\binom{n}{5}$
- D) $4\binom{n}{4}$
- E) $\binom{n}{8}$
- 2. [STEP I 2013 Q6] By considering the coefficient of x^r in the series for $(1 + x)(1 + x)^n$, or otherwise, obtain the following relation between binomial coefficients:

$$\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$$