Lower 6 Chapter 8

Binomial Expansion

Chapter Overview

- 1. Pascal's Triangle
- 2. Factorial Notation
- 3. Binomial Expansion
- 4. Using Expansions for Estimation

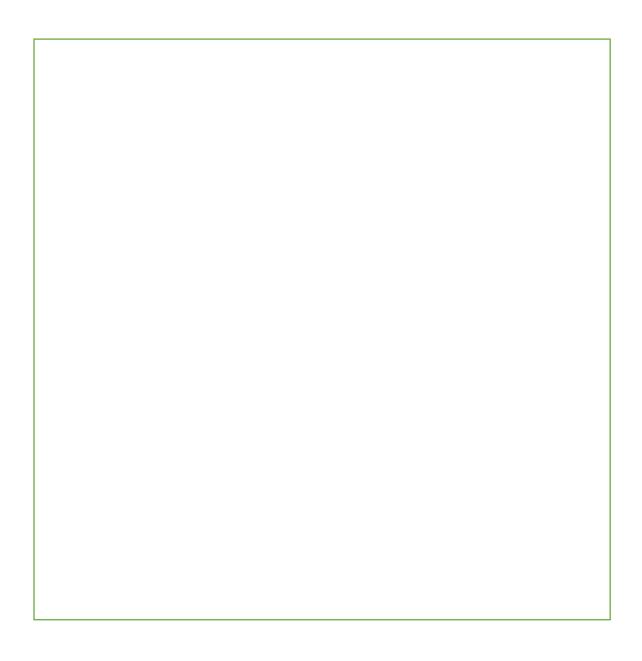
4 Sequences and series	4.1	Understand and use the binomial expansion of $(a+bx)^n$ for positive integer n ; the notations $n!$ and ${}^{\parallel}C_r$ link to binomial probabilities.	Use of Pascal's triangle. Relation between binomial coefficients. Also be aware of alternative notations such as $\binom{n}{r}$ and nC_r
------------------------------	-----	---	---

Pascal's Triangle:

Starter

- a) Expand $(a + b)^0$
- b) Expand $(a + b)^1$
- c) Expand $(a + b)^2$
- d) Expand $(a + b)^3$
- e) Expand $(a + b)^4$

What do you notice about the powers of a and b?



Example

Find the expansion of $(2 + 3x)^4$

Example

Find
$$(1 - 2x)^3 =$$

Finding a single term example:

The coefficient of x^2 in the expansion of $(2 - cx)^5$ is 720. Find the possible value(s) of the constant c.

Test Your Understanding

(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(2 + kx)^7$$

where k is a constant. Give each term in its simplest form.

(4)

Given that the coefficient of x^2 is 6 times the coefficient of x,

(b) find the value of k.

(2)

Extension

[MAT 2009 1J]

The number of pairs of positive integers x, y which solve the equation:

$$x^3 + 6x^2y + 12xy^2 + 8y^3 = 2^{30}$$

is:

- A) 0
- B) 2^{6}
- C) $2^9 1$
- D) $2^{10} + 2$

Exercise 8A Page