Tangents, chords and perpendicular bisectors

Reminder:

The tangent is perpendicular to the radius (at the point of intersection).

The perpendicular bisector of any chord passes through the centre of the circle.

Why are these useful?

Examples

- 1. The circle *C* has equation $(x 3)^2 + (y 7)^2 = 100$.
 - a) Verify the point P(11,1) lies on C.
 - b) Find an equation of the tangent to C at the point P, giving your answer in the form ax + by + c = 0

2. A circle C has equation $(x - 4)^2 + (y + 4)^2 = 10$. The line l is a tangent to the circle and has gradient -3. Find two possible equations for l, giving your answers in the form y = mx + c.

Finding the centre of a circle

Example:

The points P and Q lie on a circle with centre C, as shown in the diagram. The point P has coordinates (-8, -2) and the point Q has coordinates (2, -6). M is the midpoint of the line segment PQ.

The line l passes through the points M and C.

a) Find an equation for *l*.

- b) Given that the *y*-coordinate of *C* is -9:
 - i) show that the *x*-coordinate of *C* is -5.
 - ii) find an equation of the circle.

Test Your Understanding

1. A circle has centre C(3,5), and goes through the point P(6,9). Find the equation of the tangent of the circle at the point P, giving your equation in the form ax + by + c = 0 where a, b, c are integers.

2. A circle passes through the points A(0,0) and B(4,2). The centre of the circle has x value -1. Determine the equation of the circle.

Extension

1. MAT 2012 1A] Which of the following lines is a tangent to the circle with equation

- $x^{2} + y^{2} = 4$? A) x + y = 2
 - B) $y = x 2\sqrt{2}$
 - C) $x = \sqrt{2}$
 - D) $y = \sqrt{2} x$

2. [AEA 2006 Q4] The line with equation y = mx is a tangent to the circle C_1 with equation $(x + 4)^2 + (y - 7)^2 = 13$

(a) Show that *m* satisfies the equation $3m^2 + 56m + 36 = 0$

The tangents from the origin O to C_1 touch C_1 at the points A and B.

(b) Find the coordinates of the points A and B.

Another circle C_2 has equation $x^2 + y^2 = 13$. The tangents from the point (4, -7) to C_2 touch it at the points P and Q.

(c) Find the coordinates of either the point P or the point Q.

3. [STEP 2005 Q6]

(i) The point A has coordinates (5,16) and the point B has coordinates (4, -4). The variable P has coordinates (x, y) and moves on a path such that AP = 2BP. Show that the Cartesian equation of the path of P is $(x + 7)^2 + y^2 = 100$.

The point *C* has coordinates (a, 0) and the point *D* has coordinates (b, 0). The variable point *Q* moves on a path such that $QC = k \times QD$, where k > 1.

Exercise 6E Page 126