Lower 6 Chapter 6

Circles

Chapter Overview

- 1. Perpendicular bisector recap
- 2. Equations of circles
- 3. Intersections of lines and circles
- 4. Chords, tangents and perpendicular bisectors
- 5. Circumscribing Triangles

3.2	Understand and use the coordinate geometry of the circle including using the equation of a circle in the form $(x - a)^2 + (y - b)^2 = r^2$	Students should be able to find the radius and the coordinates of the centre of the circle given the equation of the circle, and vice versa. Students should also be familiar with the equation $x^2 + y^2 + 2fx + 2gy + c = 0$
	Completing the square to find the centre and radius of a circle; use of the following properties:	
	 the angle in a semicircle is a right angle the perpendicular from the centre to a chord bisects the chord 	Students should be able to find the equation of a circumcircle of a triangle with given vertices using these properties.
	 the radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point. 	Students should be able to find the equation of a tangent at a specified point, using the perpendicular property of tangent and radius.

Perpendicular bisectors and mid-points

Example:

Find the equation of the perpendicular bisector of A (2,5) and B (6,7).

Test Your Understanding:

1. Find the perpendicular bisector of the line AB where A and B have the coordinates:

a) A(4,7), B(10,17)

2. A line segment AB is the diameter of a circle with centre (5, -4). If A has coordinates (1, -2), what are the coordinates of B?

Exercise 6A/B Page 115 - 117