Perpendicular Lines

Quickfire Questions

Gradient	Gradient of Perpendicular Line
2	
-3	
$\frac{1}{4}$	
5	
$-\frac{2}{7}$	
7 5	

Problems

1. A line is goes through the point (9,10) and is perpendicular to another line with equation y = 3x + 2. What is the equation of the line?

2. A line L_1 goes through the points A(1,3) and B(3,-1). A second line L_2 is perpendicular to L_1 and passes through point B. Where does L_2 cross the x-axis?

3. Are the following lines parallel, perpendicular, or neither?

$$y = \frac{1}{2}x$$
$$2x - y + 4 = 0$$

Test Your Understanding

1. A line goes through the point (4,7) and is perpendicular to another line with equation y = 2x + 2. What is the equation of the line? Put your answer in the form ax + by + c = 0, where a, b, c are integers.

2. Determine the point *A*.

Extension

1. [MAT 2004 1D] What is the reflection of the point (3,4) in the line 3x + 4y = 50?

2. [MAT 2014 1D] The reflection of the point (1,0) in the line y = mx has coordinates: (in terms of m)

3. [STEP I 2004 Q6] The three points A, B, C have coordinates $(p_1, q_1), (p_2, q_2)$ and (p_3, q_3) , respectively. Find the point of intersection of the line joining A to the midpoint of BC, and the line joining B to the midpoint of AC. Verify that this point lies on the line joining C to the midpoint of AB.

The point *H* has coordinates $(p_1 + p_2 + p_3, q_1 + q_2 + q_3)$. Show that if the line *AH* intersects the line *BC* at right angles, then $p_2^2 + q_2^2 = p_3^2 + q_3^2$, and write down a similar result if the line *BH* intersects the line *AC* at right angles.

Deduce that if AH is perpendicular to BC and also BH is perpendicular to AC, then CH is perpendicular to AB.

Exercise 5E/F Page 96