Perpendicular Lines

\square

Quickfire Questions

Gradient	Gradient of Perpendicular Line
2	
-3	
$\frac{1}{4}$	
5	
$-\frac{2}{7}$	
$\frac{7}{5}$	

Problems

1. A line is goes through the point $(9,10)$ and is perpendicular to another line with equation $y=3 x+2$. What is the equation of the line?
2. A line L_{1} goes through the points $A(1,3)$ and $B(3,-1)$. A second line L_{2} is perpendicular to L_{1} and passes through point B . Where does L_{2} cross the x axis?
3. Are the following lines parallel, perpendicular, or neither?

$$
\begin{gathered}
y=\frac{1}{2} x \\
2 x-y+4=0
\end{gathered}
$$

Test Your Understanding

1. A line goes through the point $(4,7)$ and is perpendicular to another line with equation $y=2 x+2$. What is the equation of the line? Put your answer in the form $a x+b y+c=0$, where a, b, c are integers.
2. Determine the point A.

Extension

1. [MAT 2004 1D]

What is the reflection of the point $(3,4)$ in the line $3 x+4 y=50$?
2. [MAT 2014 1D] The reflection of the point $(1,0)$ in the line $y=m x$ has coordinates: (in terms of m)
3. [STEP I 2004 Q6] The three points A, B, C have coordinates $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$, respectively. Find the point of intersection of the line joining A to the midpoint of $B C$, and the line joining B to the midpoint of $A C$. Verify that this point lies on the line joining C to the midpoint of $A B$.

The point H has coordinates $\left(p_{1}+p_{2}+p_{3}, q_{1}+q_{2}+q_{3}\right)$. Show that if the line $A H$ intersects the line $B C$ at right angles, then $p_{2}^{2}+q_{2}^{2}=p_{3}^{2}+q_{3}^{2}$, and write down a similar result if the line $B H$ intersects the line $A C$ at right angles.

Deduce that if $A H$ is perpendicular to $B C$ and also $B H$ is perpendicular to $A C$, then $C H$ is perpendicular to $A B$.

