Lower 6 Chapter 5

Linear Graphs

Chapter Overview

1. $y=m x+c$
2. Parallel and perpendicular lines
3. Lengths and Areas
4. Modelling
3.1

Understand and use the equation of a straight line, including the forms
$y-y_{1}=m\left(x-x_{1}\right)$ and $a x+b y+c=0$;

Gradient conditions for two straight lines to be parallel or perpendicular.
$B e$ able to use straight line models in a variety of contexts.

To include the equation of a line through two given points, and the equation of a line parallel (or perpendicular) to a given line through a given point.
$m^{\prime}=m$ for parallel lines and $m^{\prime}=-\frac{1}{m}$ for perpendicular lines

For example, the line for converting degrees Celsius to degrees
Fahrenheit, distance against time for constant speed, etc.

1. Linear Graphs

\square

Examples:

1. The point $(5, a)$ lies on the line with equation $y=3 x+2$. Determine the value of a.
2. Find the coordinate of the point where the line $2 x+y=5$ cuts the x-axis.

Test Your Understanding:
Determine where the line $x+2 y=3$ crosses both the axes

Gradient

\square

Examples:

Find the gradient of the line between the following sets of points:

1. $(1,4)(3,10)$
2. $(5,7)(8,1)$
3. $(2,2)(-1,10)$
4. Show that the points $A(3,4), B(5,5), C(11,8)$ all lie on a straight line.
5. The line joining $(2,-5)$ to $(4, a)$ has gradient -1 . Work out the value of a.

$y=m x+c$

\square
Example:
Determine the gradient and y-intercept of the line with equation $4 x-3 y+$ $5=0$

$a x+b y+c=0$

\square

Example

Express $y=\frac{1}{3} x-\frac{2}{3}$ in the form $a x+b y+c=0$, where a, b, c are integers.

Test Your Understanding
Express $y=\frac{2}{5} x+\frac{3}{5}$ in the form $a x+b y+c=0$, where a, b, c are integers.

