The effect of transformations on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform.

Where would each of these points end up?

$y=f(x)$	$(\mathbf{4}, \mathbf{3})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{6},-\mathbf{4})$
$y=f(x+1)$			
$y=f(2 x)$			
$y=3 f(x)$			
$y=f(x)-1$			
$y=f\left(\frac{x}{4}\right)$			
$y=f(-x)$			
$y=-f(x)$			

Test Your Understanding

Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$, where

$$
f(x)=x^{2}(9-2 x)
$$

There is a minimum at the origin, a maximum at the point $(3,27)$ and C cuts the x-axis at the point A.
(a) Write down the coordinates of the point A.
(1)
(b) On separate diagrams sketch the curve with equation
(i) $y=\mathrm{f}(x+3)$,
(ii) $y=\mathrm{f}(3 x)$.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

The curve with equation $y=\mathrm{f}(x)+k$, where k is a constant, has a maximum point at $(3,10)$.
(c) Write down the value of k.
(1)
a)
b)

c)

