The effect of transformations on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform.

Where would each of these points end up?

y = f(x)	(4,3)	(1,0)	(6, -4)
y = f(x+1)			
y = f(2x)			
y = 3f(x)			
y = f(x) - 1			
$y = f\left(\frac{x}{4}\right)$			
y = f(-x)			
y = -f(x)			

Test Your Understanding

Figure 1 shows a sketch of the curve C with equation y = f(x), where

$$f(x) = x^2(9 - 2x).$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

- (a) Write down the coordinates of the point A.
- (b) On separate diagrams sketch the curve with equation
 - (i) y = f(x + 3),
 - (ii) y = f(3x).

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes. (6)

The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

(c) Write down the value of k.

(1)

(1)

a)

b)

