Points of Intersection

If $y=f(x)$ and $y=g(x)$, then the x values of the points of intersection can be found when $f(x)=g(x)$.

Examples:

1. On the same diagram sketch the curves with equations $y=x(x-3)$ and $y=x^{2}(1-x)$. Find the coordinates of their points of intersection.
2. On the same diagram sketch the curves with equations $y=x^{2}(3 x-a)$ and $y=\frac{b}{x^{\prime}}$, where a, b are positive constants. State, giving a reason, the number of real solutions to the equation $x^{2}(3 x-a)-\frac{b}{x}=0$

Test Your Understanding

On the same diagram sketch the curves with equations $y=x(x-4)$ and $y=x(x-2)^{2}$, and hence find the coordinates of any points of intersection.

Extension

1. [MAT 2005 1B]

The equation $\left(x^{2}+1\right)^{10}=2 x-x^{2}-2$
A) has $x=2$ as a solution;
B) has no real solutions;
C) has an odd number of real solutions;
D) has twenty real solutions.
2. [MAT 2010 1A] The values of k for which the line $y=k x$ intersects the parabola $y=(x-1)^{2}$ are precisely
A) $k \leq 0$
B) $k \geq-4$
C) $k \geq 0$ or $k \leq-4$
D) $-4 \leq k \leq 0$
3. [MAT 2013 1D]

Which of the following sketches is a graph of $x^{4}-y^{2}=2 y+1$?

(a)

(b)

(c)

(d)

